Alumina-based foam ceramic filters were fabricated by using alumina,SiC,magnesia powder as major materials.It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals.The influe...Alumina-based foam ceramic filters were fabricated by using alumina,SiC,magnesia powder as major materials.It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals.The influences of SiC and magnesia content,the sintering temperatures on ceramic properties were discussed.Alumina-based foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times.Its main phases after 1 hour sintering at 1 500℃ consist of alumina,silicon carbide,spinel and mullite.展开更多
The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the Ca...The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.展开更多
The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagat...The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.展开更多
Alumina-based composites containing 0-15wt% Ni metallic phase were produced by hot press-sintering Ni-coated alumina powders. The Ni-coated alumina powders were prepared by the aqueous heterogeneous precipitation of a...Alumina-based composites containing 0-15wt% Ni metallic phase were produced by hot press-sintering Ni-coated alumina powders. The Ni-coated alumina powders were prepared by the aqueous heterogeneous precipitation of alumina micro-powders and nickel sulfate salt followed by reduction process. The microstructural features and dispersion of Ni phase in Ni-coated alumina powders and the subsequent alumina-Ni cermets were investigated using scanning electron microscope (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM). The relative density of the hot press-sintered composites was measured with the Archimedes' method while the fracture strength and the fracture toughness were defined with the three-point bending method and the micro-indentation fracture method. In the formation of alumina-Ni cermets from sintered Ni-coated alumina powders, Ni phase to some extent limits the densification rate and stifles the coarsening and growing process of alumina grains. The Ni phase is found to be located at the interfaces and the triple-joint junctions of alumina grains which results into alteration of the fracture mode of alumina and its increased fracture strength and fracture toughness if compared with monolithic alumina.展开更多
The precision casting method based on aluminabased ceramic cores is one of the main techniques used to manufacture hollow turbine blades.Additive manufacturing(AM)technology provides an alternate solution to fabricati...The precision casting method based on aluminabased ceramic cores is one of the main techniques used to manufacture hollow turbine blades.Additive manufacturing(AM)technology provides an alternate solution to fabricating ceramic cores quickly and precisely.As the complexity of the structure increases and the strength of the material improves,the leaching process of the cores becomes more complicated.This study proposes a compound pore-forming method to increase the porosity of ceramic cores by adding a preformed-pore agent and materials that convert to easy-to-corrode phases.The preformed-pore agents(e.g.,carbon fibers)can be burned off during sintering to form pores before the leaching,and the easy-to-corrode phases(e.g.,CaCO3,SiO2,^-A12O3)can be leached firstly to form pores during the leaching process.The pores formed in the aforementioned two stages increase the contact area of the cores and leaching solution,thus improving the leaching rate.In the current study,the additive amount of the preformed-pore agent was optimized,and the effect of the easy-to-corrode phases on the comprehensive properties of the cores was then compared.Based on this,the corresponding model was established.展开更多
基金The project is supported by National Natural Science Foundation of China:50334030PhD Fund of Liaoning Province:20041010.
文摘Alumina-based foam ceramic filters were fabricated by using alumina,SiC,magnesia powder as major materials.It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals.The influences of SiC and magnesia content,the sintering temperatures on ceramic properties were discussed.Alumina-based foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times.Its main phases after 1 hour sintering at 1 500℃ consist of alumina,silicon carbide,spinel and mullite.
基金supported by the National Natural Science Foundation of China(52272022)the Special Project of Central Government for Local Science and Technology Development of Hubei Province(2019ZYYD076)the Innovation and Entrepreneurship Fund of Wuhan University of Science and Technology(D202202171045002669).
文摘The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.
文摘The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.
基金Innovation Foundation of Jiangsu University(04CX01)
文摘Alumina-based composites containing 0-15wt% Ni metallic phase were produced by hot press-sintering Ni-coated alumina powders. The Ni-coated alumina powders were prepared by the aqueous heterogeneous precipitation of alumina micro-powders and nickel sulfate salt followed by reduction process. The microstructural features and dispersion of Ni phase in Ni-coated alumina powders and the subsequent alumina-Ni cermets were investigated using scanning electron microscope (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM). The relative density of the hot press-sintered composites was measured with the Archimedes' method while the fracture strength and the fracture toughness were defined with the three-point bending method and the micro-indentation fracture method. In the formation of alumina-Ni cermets from sintered Ni-coated alumina powders, Ni phase to some extent limits the densification rate and stifles the coarsening and growing process of alumina grains. The Ni phase is found to be located at the interfaces and the triple-joint junctions of alumina grains which results into alteration of the fracture mode of alumina and its increased fracture strength and fracture toughness if compared with monolithic alumina.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51505457)the National Science and Technology Major Project(Grant No.2017-VII-0008-0101)+2 种基金the Key Research and Development Program of Shaanxi Province(Grant No.2018ZDXM-GY-059)the Open Fund of State Key Laboratory of Manufacturing Systems Engineering(Grant No.SKLMS2016013)the Fundamental Research Funds for the Central Universities,and the Youth Innovation Team of Shaanxi Universities.
文摘The precision casting method based on aluminabased ceramic cores is one of the main techniques used to manufacture hollow turbine blades.Additive manufacturing(AM)technology provides an alternate solution to fabricating ceramic cores quickly and precisely.As the complexity of the structure increases and the strength of the material improves,the leaching process of the cores becomes more complicated.This study proposes a compound pore-forming method to increase the porosity of ceramic cores by adding a preformed-pore agent and materials that convert to easy-to-corrode phases.The preformed-pore agents(e.g.,carbon fibers)can be burned off during sintering to form pores before the leaching,and the easy-to-corrode phases(e.g.,CaCO3,SiO2,^-A12O3)can be leached firstly to form pores during the leaching process.The pores formed in the aforementioned two stages increase the contact area of the cores and leaching solution,thus improving the leaching rate.In the current study,the additive amount of the preformed-pore agent was optimized,and the effect of the easy-to-corrode phases on the comprehensive properties of the cores was then compared.Based on this,the corresponding model was established.