To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (...To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (AIN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of A1N added (lwt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing A1N content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the aver- age pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AIN.展开更多
Aluminium nitride ceramics containing 15 -30 w/o of SiC whiskers can be sintered to full density (by hot pressing at 1800℃)using 2-3 w/o of Y2O3 additions. The whiskers increase the toughness and strength of the comp...Aluminium nitride ceramics containing 15 -30 w/o of SiC whiskers can be sintered to full density (by hot pressing at 1800℃)using 2-3 w/o of Y2O3 additions. The whiskers increase the toughness and strength of the composite, KIC increasing from 2. & to about 5.0 and flexural strength increasing by 30-50%. However, the whiskers must be well dispersed and if the dispersion is not satisfactory, toughness may increase but the strength decreases. The hot-pressing temperature can be reduced by up to 100℃ if Y(NO3)3 . 5H2O is used as the sintering additive instead of Y2O3, but some oxidation of the AIN occurs during heating. Isopropan-2-01 is a better dispersing agent than cyclohexane, but again some oxidation of the AIN does occur.The best sample prepared during this work contained 20 w/o of SiC whiskers and 2 w/o Y2O3 added as Y(NO3)3. 5H2O and mixed in isopropanol. This exhibited a mean strength of 453MPa (maximum 522MPa, measured by disc flexure) and a fracture toughness of5. 5MPam1/2.展开更多
In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy (VN) in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration...In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy (VN) in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration, density of states, and formation energies of various charge states are calculated. Two defect states are introduced by the defect, which are a doubly occupied single state above the valance band maximum (VBM) and a singly occupied triple state below the conduction band minimum (CBM) for wurtzite AlN and above the CBM for zinc-blende AlN. So VN acts as a deep donor in wurtzite AlN and a shallow donor in zinc-blende AlN. A thermodynamic transition level E(3+/+) with very low formation energy appears at 0.7 and 0,6eV above the VBM in wurtzite and zinc-blende structure respectively, which may have a wide shift to the low energy side if atoms surrounding the defect are not fully relaxed. Several other transition levels appear in the upper part of the bandgap. The number of these levels decreases with the structure relaxation. However, these levels are unimportant to AlN properties because of their high formation energy.展开更多
Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further p...Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The research effort in the MEMS Piezoelectric vibration energy harvester designed using three types of cantilever materials, Lithium Niobate (LiNbO3), Aluminum Nitride (AlN) and Zinc Oxide (ZnO) with different substrate materials: aluminum, steel and silicon using COMSOL Multiphysics package were designed and analyzed. Voltage, mechanical power and electrical power versus frequency for different cantilever materials and substrates were modeled and simulated using Finite element method (FEM). The resonant frequencies of the LiNbO3/Al, AlN/Al and ZnO/Al systems were found to be 187.5 Hz, 279.5 Hz and 173.5 Hz, respectively. We found that ZnO/Al system yields optimum voltage and electrical power values of 8.2 V and 2.8 mW, respectively. For ZnO cantilever on aluminum, steel and silicon substrates, we found the resonant frequencies to be 173.5 Hz, 170 Hz and 175 Hz, respectively. Interestingly, ZnO/steel yields optimal voltage and electrical power values of 9.83 V and 4.02 mW, respectively. Furthermore, all systems were studied at different differentiate frequencies. We found that voltage and electrical power have increased as the acceleration has increased.展开更多
The effects of aluminium nitride(AlN)hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross were studied using response surface methodology.The results show that the fractal dimension...The effects of aluminium nitride(AlN)hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross were studied using response surface methodology.The results show that the fractal dimensions of the residue can be significantly influenced by the AlN hydrolysis from secondary aluminium dross.The hydrolysis of AlN in the dross was spontaneous under temperatures of303-373K.The actual fractal dimensions of residue were significantly affected by the liquid-solid ratio(p<0.05)and changed from1.16to1.80,which accurately aligned with those from the calculations.Moreover,the fractal dimensions of residue were significantly affected by the interactions between hydrolysis temperature and hydrolysis time,liquid-solid ratio and hydrolysis time,respectively(p<0.01).The minimum fractal dimensions of the residue reached1.15under the optimized conditions,which included a hydrolysis temperature of30℃,liquid-solid ratio of5mL/g and hydrolysis time of10min.The results suggest that response surface methodology can guide in optimizing the conditions of AlN hydrolysis in order to obtain the minimum fractal dimensions of residue for improving the reutilization of the dross.展开更多
High-density AlN ceramics were fabricated without sintering additives at high pressure(5.0 GPa) and temperature(1300~1800℃).The sintered bodies were characterized by XRD,SEM and micro-Raman spectroscopy(MRS).Control...High-density AlN ceramics were fabricated without sintering additives at high pressure(5.0 GPa) and temperature(1300~1800℃).The sintered bodies were characterized by XRD,SEM and micro-Raman spectroscopy(MRS).Controlling fracture mode was intragranular when the sintering temperature was as low as 1400℃under 5.0 GPa.The values of residual stresses due to the distortion of the AlN lattice were assessed using the Micro-Raman Spectroscopy(MRS).The residual compression stress of the AlN ceramics sintered at 5.0 GPaand 1700℃for 125 min is 2.0 GPa.The residual compression stress is increased according to the extension of the sintering time.展开更多
Aluminum nitride(AlN)is considered one of the most desirable materials for integrated circuits and electronic packaging substrates.However,raw AlN powder reacts easily with water,forming Al(OH)3 or AlOOH on the surfac...Aluminum nitride(AlN)is considered one of the most desirable materials for integrated circuits and electronic packaging substrates.However,raw AlN powder reacts easily with water,forming Al(OH)3 or AlOOH on the surface and hindering the development of an aqueous tape-casting process for preparing AlN ceramic substrates.In this study,hydrolyzed polymaleic anhydride(HPMA)was used to modify AlN powder,which has good water solubility and dispersibility.The AlN powder was modified with 5 wt%HPMA remained stable in water for at least 90 h under magnetic stirring condition and 24 h under ball milling condition,indicating that HPMA-modified AlN powder has good resistance to hydrolysis.The action mechanism of HPMA is revealed.Firstly,–COOH of the HPMA polymer and the oxide layer on the surface of the AlN powder underwent a dehydration condensation reaction to form a compound.Secondly,long chains of the polymer further coated the surface of the AlN powder,forming an anti-hydration layer with a thickness of about 7.0 nm on the surface of the AlN particles.In addition,AlN green sheets were successfully prepared by aqueous tape casting using the HPMA-modified AlN powder without additional dispersants.Subsequently,AlN ceramic substrates were obtained by sintering at 1750℃for 4 h under an N2 atmosphere with a pressure of 0.2 MPa.The relative density and thermal conductivity were tested to be 97.3%and 122 W/(m·K),respectively.展开更多
Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the diff...Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%.展开更多
基金the Science and Technology Support Projects of Sichuan Province (No. 2014GZ0011)the Industry Promotion Projects of Panzhihua in China (No.2013CY-C-2) for their financial support
文摘To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (AIN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of A1N added (lwt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing A1N content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the aver- age pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AIN.
文摘Aluminium nitride ceramics containing 15 -30 w/o of SiC whiskers can be sintered to full density (by hot pressing at 1800℃)using 2-3 w/o of Y2O3 additions. The whiskers increase the toughness and strength of the composite, KIC increasing from 2. & to about 5.0 and flexural strength increasing by 30-50%. However, the whiskers must be well dispersed and if the dispersion is not satisfactory, toughness may increase but the strength decreases. The hot-pressing temperature can be reduced by up to 100℃ if Y(NO3)3 . 5H2O is used as the sintering additive instead of Y2O3, but some oxidation of the AIN occurs during heating. Isopropan-2-01 is a better dispersing agent than cyclohexane, but again some oxidation of the AIN does occur.The best sample prepared during this work contained 20 w/o of SiC whiskers and 2 w/o Y2O3 added as Y(NO3)3. 5H2O and mixed in isopropanol. This exhibited a mean strength of 453MPa (maximum 522MPa, measured by disc flexure) and a fracture toughness of5. 5MPam1/2.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474078). Acknowledgement Thanks for the Intelligent Information Process and Calculation Laboratory of Science School in Xi'an Jiaotong University providing us the computing condition.
文摘In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy (VN) in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration, density of states, and formation energies of various charge states are calculated. Two defect states are introduced by the defect, which are a doubly occupied single state above the valance band maximum (VBM) and a singly occupied triple state below the conduction band minimum (CBM) for wurtzite AlN and above the CBM for zinc-blende AlN. So VN acts as a deep donor in wurtzite AlN and a shallow donor in zinc-blende AlN. A thermodynamic transition level E(3+/+) with very low formation energy appears at 0.7 and 0,6eV above the VBM in wurtzite and zinc-blende structure respectively, which may have a wide shift to the low energy side if atoms surrounding the defect are not fully relaxed. Several other transition levels appear in the upper part of the bandgap. The number of these levels decreases with the structure relaxation. However, these levels are unimportant to AlN properties because of their high formation energy.
文摘Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The research effort in the MEMS Piezoelectric vibration energy harvester designed using three types of cantilever materials, Lithium Niobate (LiNbO3), Aluminum Nitride (AlN) and Zinc Oxide (ZnO) with different substrate materials: aluminum, steel and silicon using COMSOL Multiphysics package were designed and analyzed. Voltage, mechanical power and electrical power versus frequency for different cantilever materials and substrates were modeled and simulated using Finite element method (FEM). The resonant frequencies of the LiNbO3/Al, AlN/Al and ZnO/Al systems were found to be 187.5 Hz, 279.5 Hz and 173.5 Hz, respectively. We found that ZnO/Al system yields optimum voltage and electrical power values of 8.2 V and 2.8 mW, respectively. For ZnO cantilever on aluminum, steel and silicon substrates, we found the resonant frequencies to be 173.5 Hz, 170 Hz and 175 Hz, respectively. Interestingly, ZnO/steel yields optimal voltage and electrical power values of 9.83 V and 4.02 mW, respectively. Furthermore, all systems were studied at different differentiate frequencies. We found that voltage and electrical power have increased as the acceleration has increased.
基金Project (21577176) supported by the National Natural Science Foundation of ChinaProject (2016,No.59-3) supported by the Environment Protection Scientific Research Project of Hunan Province,China
文摘The effects of aluminium nitride(AlN)hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross were studied using response surface methodology.The results show that the fractal dimensions of the residue can be significantly influenced by the AlN hydrolysis from secondary aluminium dross.The hydrolysis of AlN in the dross was spontaneous under temperatures of303-373K.The actual fractal dimensions of residue were significantly affected by the liquid-solid ratio(p<0.05)and changed from1.16to1.80,which accurately aligned with those from the calculations.Moreover,the fractal dimensions of residue were significantly affected by the interactions between hydrolysis temperature and hydrolysis time,liquid-solid ratio and hydrolysis time,respectively(p<0.01).The minimum fractal dimensions of the residue reached1.15under the optimized conditions,which included a hydrolysis temperature of30℃,liquid-solid ratio of5mL/g and hydrolysis time of10min.The results suggest that response surface methodology can guide in optimizing the conditions of AlN hydrolysis in order to obtain the minimum fractal dimensions of residue for improving the reutilization of the dross.
基金the Cultivation Project for Original Scientific Research Instruments and Equipments of Southwest Jiaotong University,China(No.XJ2021KJZK041)the Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-19-08)the China Postdoctoral Science Foundation(No.2018T110993)。
基金Supported by the National Natural Science Foundation of China(50572032)
文摘High-density AlN ceramics were fabricated without sintering additives at high pressure(5.0 GPa) and temperature(1300~1800℃).The sintered bodies were characterized by XRD,SEM and micro-Raman spectroscopy(MRS).Controlling fracture mode was intragranular when the sintering temperature was as low as 1400℃under 5.0 GPa.The values of residual stresses due to the distortion of the AlN lattice were assessed using the Micro-Raman Spectroscopy(MRS).The residual compression stress of the AlN ceramics sintered at 5.0 GPaand 1700℃for 125 min is 2.0 GPa.The residual compression stress is increased according to the extension of the sintering time.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52102101,52267001)the Natural Science Foundation of Jiangxi Province(No.20212BAB204019).
文摘Aluminum nitride(AlN)is considered one of the most desirable materials for integrated circuits and electronic packaging substrates.However,raw AlN powder reacts easily with water,forming Al(OH)3 or AlOOH on the surface and hindering the development of an aqueous tape-casting process for preparing AlN ceramic substrates.In this study,hydrolyzed polymaleic anhydride(HPMA)was used to modify AlN powder,which has good water solubility and dispersibility.The AlN powder was modified with 5 wt%HPMA remained stable in water for at least 90 h under magnetic stirring condition and 24 h under ball milling condition,indicating that HPMA-modified AlN powder has good resistance to hydrolysis.The action mechanism of HPMA is revealed.Firstly,–COOH of the HPMA polymer and the oxide layer on the surface of the AlN powder underwent a dehydration condensation reaction to form a compound.Secondly,long chains of the polymer further coated the surface of the AlN powder,forming an anti-hydration layer with a thickness of about 7.0 nm on the surface of the AlN particles.In addition,AlN green sheets were successfully prepared by aqueous tape casting using the HPMA-modified AlN powder without additional dispersants.Subsequently,AlN ceramic substrates were obtained by sintering at 1750℃for 4 h under an N2 atmosphere with a pressure of 0.2 MPa.The relative density and thermal conductivity were tested to be 97.3%and 122 W/(m·K),respectively.
基金The study was supported by the Education and Research Project for Young and Middle-Aged Teachers in Fujian Province(JAT201167).
文摘Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%.