Heterogeneous catalyst aluminium oxide(acidic) is found to be an effective catalyst for the solvent-free condensation reaction of indole with aldehydes in microwave irradiation with shorter reaction time and higher yi...Heterogeneous catalyst aluminium oxide(acidic) is found to be an effective catalyst for the solvent-free condensation reaction of indole with aldehydes in microwave irradiation with shorter reaction time and higher yields.展开更多
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thre...Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.展开更多
Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electr...Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations.展开更多
The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands co...The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands coordinated to one europium ion. The stability constants varied from 11.64 to 14.60 (log 13). Binary complexes exhibited rather weak luminescence in solution. 1,3,5-triazine diphosphine oxides engaged as co-ligands in Eu(Ⅲ) (2-thenoyltrifluoroacetonate)3 complex contributed to the overall photoluminescence and allowed for excitation with longer wavelengths than the parent complex.展开更多
Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conve...Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conversion of glycerol to formic acid and glycolic acid using H2O2 as an oxidant and metal(Ⅲ)triflate-based catalytic systems.Aluminum(Ⅲ)triflate was found to be the most efficient catalyst for the selective oxidation of glycerol to formic acid.A correlation between the catalytic activity of the metal cations and their hydrolysis constants(Kh)and water exchange rate constants was observed.At 70 ℃,a formic acid yield of up to 72% could be attained within 12 h.The catalyst could be recycled at least five times with a high conversion rate,and hence can also be used for the selective oxidation of other biomass platform molecules.Reaction kinetics and 1H NMR studies showed that the oxidation of glycerol(to formic acid)involved glycerol hydrolysis pathways with glyceric acid and glycolic acid as the main intermediate products.Both the [Al(OH)x]^n+ Lewis acid species and CF3SO3H Brosted acid,which were generated by the in-situ hydrolysis of Al(OTf)3,were responsible for glycerol conversion.The easy availability,high efficiency,and good recyclability of Al(OTf)3 render it suitable for the selective oxidation of glycerol to high value-added products.展开更多
Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function...Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater.展开更多
Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825...Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The rickets microhardness, D (HV0.2), and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Csul) was maintained at 100 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.展开更多
Pulsed reactive sputtering is a novel process used to deposit some compound films, which are not deposited by traditional D.C. reactive sputtering easily. In this paper some experimental results about the deposition o...Pulsed reactive sputtering is a novel process used to deposit some compound films, which are not deposited by traditional D.C. reactive sputtering easily. In this paper some experimental results about the deposition of Al oxide films by pulsed reactive sputtering are presented. The hysteresis phenomenon of the sputtering voltage and deposition rate with the change of oxygen flow during sputtering process are discussed.展开更多
The structure and properties of coatings based on WC-Co alloys containing additives of 1% - 5% aluminium oxide and 2.5% - 4.5% carbon were investigated. The coatings had a nanocrystalline structure. Depending on the d...The structure and properties of coatings based on WC-Co alloys containing additives of 1% - 5% aluminium oxide and 2.5% - 4.5% carbon were investigated. The coatings had a nanocrystalline structure. Depending on the duration and frequency of the discharge pulses, the ratio between WC and W2C in the coatings was different. The additives in the hard alloy allowed us increase the microhardness and wear resistance of the coatings by a factor of 2 - 3 in comparison to coatings created using a conventional WC-10%Co alloy.展开更多
The composition,structure and micro-morphology of magnesium- iron- aluminum composite oxides were investigated using various methods such as XRF,SEM,EDS,XRD and KMn O4-titration. Compared to hercynite,the composite ox...The composition,structure and micro-morphology of magnesium- iron- aluminum composite oxides were investigated using various methods such as XRF,SEM,EDS,XRD and KMn O4-titration. Compared to hercynite,the composite oxides have completely different phases including solid solution( Mg O)0. 77( Fe O)0. 23,composite spinel Mg Fe0. 2Al1. 8O4 and a small amount of Mg Fe2O4. The composite oxides exhibit excellent corrosion resistance to cement clinker and potassium salts.The products produced by magnesite and the composite oxides show better performance than magnesia- hercynite bricks,especially the corrosion resistance and thermal shock resistance.展开更多
The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc o...The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings.展开更多
Oxidation of As(Ⅲ) by three types of manganese oxides and the effects ofpH, ion strength and tartaric acid on the oxidation were investigated by means of chemical analysis, equilibrium redox, X-ray diffraction (XR...Oxidation of As(Ⅲ) by three types of manganese oxides and the effects ofpH, ion strength and tartaric acid on the oxidation were investigated by means of chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals, bimessite, cryptomelane, and hausmannite, which widely occur in soil and sediments, could actively oxidize As(Ⅲ) to As(Ⅴ). However, their ability in As(Ⅲ)-oxidation varied greatly depending on their structure, composition and surface properties. Tunnel structured cryptomelane exhibited the highest ability of As (Ⅲ) oxidation, followed by the layer structured birnessite and the lower oxide hausmannite. The maximum amount of As (Ⅴ) produced by the oxidation was in the order (mmol/kg) of cryptomelane (824.2) 〉 bimessite (480.4) 〉 hausmannite (117.9), As pH increased from the very low value(pH 2.5), the amount of As(Ⅲ) oxidized by the tested Mn oxides was firstly decreased, then negatively peaked in pH 3.0 6.5, and eventually increased remarkably. Oxidation of As(Ⅲ) by the Mn oxides had a buffering effects on the pH variation in the solution. It is proposed that the oxidative reaction processes between As (Ⅲ) and biruessite(or cryptomelane) are as follows: (1) at lower pH condition: (MnO2)x+ H3AsO3 + 0.5H^+=0.5H2AsO4^- + 0.5HAsO4^2- +Mn〉^2+ (MnO2)x-1 + H2O; (2) at higher pH condition: (MnO2)x + H3AsO3 = 0.5H2AsO4^- + 0.5HAsO4^2- + 1.5H^+ + (MnO2)x-1. MnO. With increase of ion strength, the As(Ⅲ) oxidized by bimessite and cryptomelane decreased and was negatively correlated with ion strength. However, ion strength had little influence on As (Ⅲ) oxidation by the hausmarmite. The presence of tartaric acid promoted oxidation of As(Ⅲ) by birnessite. As for cryptomelane and hansmannite, the same effect was observed when the concentration of tartaric acid was below 4 mmol/L, otherwise the oxidized As(Ⅲ) decreased. These findings are of great significance in improving our understanding of As geochemical cycling and controlling As contamination.展开更多
Micro-arc oxidation(MAO) technique is capable of producing dense oxide films on the aluminium alloy surface. This oxide film protects the aluminium alloy from the corrosion attack for longer duration.Empirical relatio...Micro-arc oxidation(MAO) technique is capable of producing dense oxide films on the aluminium alloy surface. This oxide film protects the aluminium alloy from the corrosion attack for longer duration.Empirical relationships were derived to evaluate the MAO coating properties(porosity and hardness) by incorporating very important MAO parameters(current density, inter-electrode distance and oxidation time). MAO parameters were also optimized to achieve coatings with minimum porosity and maximum hardness. Further, the effect of MAO parameters on coating characteristics was analysed. From the results, it is found that the current density has greater influence on the responses than the other two parameters.展开更多
Two series of cobalt(Ⅲ)\|containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acet...Two series of cobalt(Ⅲ)\|containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD,TEM,ESR,UV\|DRS and XPS,and the interaction between Co and Bi was studied as well. It has been found that nano\|sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)\|containing spinel are still maintained. The shift of the binding energy of Bi\-\{\%4f\%\-\{7/2\}\} is related to the catalytic activity of these catalysts doped with bismuth oxide.展开更多
In this study, the kinetics and mechanism of the iridium( Ⅲ ) -catalyzed oxidation of ethanol amine(EAN) by cerium(Ⅳ) in a sulfuric acid medium was investigated using titrimetric technique of redox in a temper...In this study, the kinetics and mechanism of the iridium( Ⅲ ) -catalyzed oxidation of ethanol amine(EAN) by cerium(Ⅳ) in a sulfuric acid medium was investigated using titrimetric technique of redox in a temperature range of 298--313 K. It was found that the reaction is of first order with respect to Ce( Ⅳ ) and It( Ⅲ ), and a positive fractional order with respect to EAN. It was also found that the pseudo-first-order ( [EAN ] 〉〉 [ Ce ( Ⅳ) ] ) rate constant koba decreases with the increase of [ H^+ ] and [ HSO^-4 ]. Under the protection of nitrogen gas, the reaction system can initiate the polymerization of acrylonitrile, indicating the generation of free radicals. On the basis of the experimental results, a suitable mechanism was proposed. From the dependence of koba on the concentration of hydrogen sulfate, Ce(SO4)2 was found to be the kinetically active species. The rate constants of the rote-determining step together with the activation parameters were evaluated.展开更多
The active oxygen species in the catalytic oxidation system of Fe(Ⅲ)PcTs-t-BuOOH were identified,and the mechanism of the catalytic oxidation of phenolic substrates was proposed.Quinone imine molecules,the main produ...The active oxygen species in the catalytic oxidation system of Fe(Ⅲ)PcTs-t-BuOOH were identified,and the mechanism of the catalytic oxidation of phenolic substrates was proposed.Quinone imine molecules,the main products of catalytic oxidation reaction,can be adsorbed on the surface of CdTe QDs,resulting in their fluorescence quenching.A dual function of catalytic oxidation and fluorescence sensing was developed for the determination of dichlorophenol(DCP)based on the Fe(Ⅲ)PcTs-BuOOH-CdTe QDs system.The linear detection range of DCP was 1×10^(-6)-1.3×10^(-4) mol/L,and the detection limit 2.4×10^(-7) mol/L.This method was characterized by high selectivity,good repeatability and desirable stability,presenting promising potentials for analyzing DCP concentration in real water samples.展开更多
Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ...Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst.展开更多
Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile me...Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.展开更多
文摘Heterogeneous catalyst aluminium oxide(acidic) is found to be an effective catalyst for the solvent-free condensation reaction of indole with aldehydes in microwave irradiation with shorter reaction time and higher yields.
基金the National Natural Science Foundation of China (Nos. 40471070 and 40403009) the Key Project of the Ministry of Education of China (No. 105122) for financial supports to this research.
文摘Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.
基金supported by the Science and Technology Foundation of Guizhou Province,China(No.[2020]1Y163)the National Natural Science Foundation of China(No.41827802).
文摘Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations.
基金support from the Polish Ministry of Science and Higher Education (3T09A 081 28)
文摘The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands coordinated to one europium ion. The stability constants varied from 11.64 to 14.60 (log 13). Binary complexes exhibited rather weak luminescence in solution. 1,3,5-triazine diphosphine oxides engaged as co-ligands in Eu(Ⅲ) (2-thenoyltrifluoroacetonate)3 complex contributed to the overall photoluminescence and allowed for excitation with longer wavelengths than the parent complex.
基金the National Natural Science Foundation of China(21773061,21373082)the Innovation Program of Shanghai Municipal Education Commission(15ZZ031)~~
文摘Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conversion of glycerol to formic acid and glycolic acid using H2O2 as an oxidant and metal(Ⅲ)triflate-based catalytic systems.Aluminum(Ⅲ)triflate was found to be the most efficient catalyst for the selective oxidation of glycerol to formic acid.A correlation between the catalytic activity of the metal cations and their hydrolysis constants(Kh)and water exchange rate constants was observed.At 70 ℃,a formic acid yield of up to 72% could be attained within 12 h.The catalyst could be recycled at least five times with a high conversion rate,and hence can also be used for the selective oxidation of other biomass platform molecules.Reaction kinetics and 1H NMR studies showed that the oxidation of glycerol(to formic acid)involved glycerol hydrolysis pathways with glyceric acid and glycolic acid as the main intermediate products.Both the [Al(OH)x]^n+ Lewis acid species and CF3SO3H Brosted acid,which were generated by the in-situ hydrolysis of Al(OTf)3,were responsible for glycerol conversion.The easy availability,high efficiency,and good recyclability of Al(OTf)3 render it suitable for the selective oxidation of glycerol to high value-added products.
基金Supported by the State Key Development Program for Basic Research of China(2014CB460601)the International S&T Cooperation Program of China(2014DFE70070)
文摘Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater.
文摘Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The rickets microhardness, D (HV0.2), and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Csul) was maintained at 100 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.
文摘Pulsed reactive sputtering is a novel process used to deposit some compound films, which are not deposited by traditional D.C. reactive sputtering easily. In this paper some experimental results about the deposition of Al oxide films by pulsed reactive sputtering are presented. The hysteresis phenomenon of the sputtering voltage and deposition rate with the change of oxygen flow during sputtering process are discussed.
文摘The structure and properties of coatings based on WC-Co alloys containing additives of 1% - 5% aluminium oxide and 2.5% - 4.5% carbon were investigated. The coatings had a nanocrystalline structure. Depending on the duration and frequency of the discharge pulses, the ratio between WC and W2C in the coatings was different. The additives in the hard alloy allowed us increase the microhardness and wear resistance of the coatings by a factor of 2 - 3 in comparison to coatings created using a conventional WC-10%Co alloy.
文摘The composition,structure and micro-morphology of magnesium- iron- aluminum composite oxides were investigated using various methods such as XRF,SEM,EDS,XRD and KMn O4-titration. Compared to hercynite,the composite oxides have completely different phases including solid solution( Mg O)0. 77( Fe O)0. 23,composite spinel Mg Fe0. 2Al1. 8O4 and a small amount of Mg Fe2O4. The composite oxides exhibit excellent corrosion resistance to cement clinker and potassium salts.The products produced by magnesite and the composite oxides show better performance than magnesia- hercynite bricks,especially the corrosion resistance and thermal shock resistance.
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-,borate- and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation(MAO) were studied by scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),microhardness and friction-abrasion tests,respectively.SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive.XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases,which are consistent with the EDS analysis.Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-,borate- and aluminate-based electrolyte.On the other hand,nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings in all cases.Furthermore,the borate-MAO coatings present an inferior anti-wearing property compared with the silicate- and aluminate-MAO coatings for both the nanoadditive-free and nanoadditive-containing coatings.
文摘Oxidation of As(Ⅲ) by three types of manganese oxides and the effects ofpH, ion strength and tartaric acid on the oxidation were investigated by means of chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals, bimessite, cryptomelane, and hausmannite, which widely occur in soil and sediments, could actively oxidize As(Ⅲ) to As(Ⅴ). However, their ability in As(Ⅲ)-oxidation varied greatly depending on their structure, composition and surface properties. Tunnel structured cryptomelane exhibited the highest ability of As (Ⅲ) oxidation, followed by the layer structured birnessite and the lower oxide hausmannite. The maximum amount of As (Ⅴ) produced by the oxidation was in the order (mmol/kg) of cryptomelane (824.2) 〉 bimessite (480.4) 〉 hausmannite (117.9), As pH increased from the very low value(pH 2.5), the amount of As(Ⅲ) oxidized by the tested Mn oxides was firstly decreased, then negatively peaked in pH 3.0 6.5, and eventually increased remarkably. Oxidation of As(Ⅲ) by the Mn oxides had a buffering effects on the pH variation in the solution. It is proposed that the oxidative reaction processes between As (Ⅲ) and biruessite(or cryptomelane) are as follows: (1) at lower pH condition: (MnO2)x+ H3AsO3 + 0.5H^+=0.5H2AsO4^- + 0.5HAsO4^2- +Mn〉^2+ (MnO2)x-1 + H2O; (2) at higher pH condition: (MnO2)x + H3AsO3 = 0.5H2AsO4^- + 0.5HAsO4^2- + 1.5H^+ + (MnO2)x-1. MnO. With increase of ion strength, the As(Ⅲ) oxidized by bimessite and cryptomelane decreased and was negatively correlated with ion strength. However, ion strength had little influence on As (Ⅲ) oxidation by the hausmarmite. The presence of tartaric acid promoted oxidation of As(Ⅲ) by birnessite. As for cryptomelane and hansmannite, the same effect was observed when the concentration of tartaric acid was below 4 mmol/L, otherwise the oxidized As(Ⅲ) decreased. These findings are of great significance in improving our understanding of As geochemical cycling and controlling As contamination.
基金Council of Scientific and Industrial Research (G8/19901/2013), New Delhi for the financial support provided to conduct this investigation through sponsored project No. 22(0615)/13/EMR-II dated 26.02.2013
文摘Micro-arc oxidation(MAO) technique is capable of producing dense oxide films on the aluminium alloy surface. This oxide film protects the aluminium alloy from the corrosion attack for longer duration.Empirical relationships were derived to evaluate the MAO coating properties(porosity and hardness) by incorporating very important MAO parameters(current density, inter-electrode distance and oxidation time). MAO parameters were also optimized to achieve coatings with minimum porosity and maximum hardness. Further, the effect of MAO parameters on coating characteristics was analysed. From the results, it is found that the current density has greater influence on the responses than the other two parameters.
文摘Two series of cobalt(Ⅲ)\|containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD,TEM,ESR,UV\|DRS and XPS,and the interaction between Co and Bi was studied as well. It has been found that nano\|sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)\|containing spinel are still maintained. The shift of the binding energy of Bi\-\{\%4f\%\-\{7/2\}\} is related to the catalytic activity of these catalysts doped with bismuth oxide.
基金Supported by the Doctoral Foundation of Education Department of Hebei Province(NoB2004205) Hebei University Re-search Foundation(No2003Z09)
文摘In this study, the kinetics and mechanism of the iridium( Ⅲ ) -catalyzed oxidation of ethanol amine(EAN) by cerium(Ⅳ) in a sulfuric acid medium was investigated using titrimetric technique of redox in a temperature range of 298--313 K. It was found that the reaction is of first order with respect to Ce( Ⅳ ) and It( Ⅲ ), and a positive fractional order with respect to EAN. It was also found that the pseudo-first-order ( [EAN ] 〉〉 [ Ce ( Ⅳ) ] ) rate constant koba decreases with the increase of [ H^+ ] and [ HSO^-4 ]. Under the protection of nitrogen gas, the reaction system can initiate the polymerization of acrylonitrile, indicating the generation of free radicals. On the basis of the experimental results, a suitable mechanism was proposed. From the dependence of koba on the concentration of hydrogen sulfate, Ce(SO4)2 was found to be the kinetically active species. The rate constants of the rote-determining step together with the activation parameters were evaluated.
基金Funded by the National Natural Science Foundation of China(No.61205062)the Hubei Provincial Department of Education Scientific Research Program Guidance Project(No.B2020282)。
文摘The active oxygen species in the catalytic oxidation system of Fe(Ⅲ)PcTs-t-BuOOH were identified,and the mechanism of the catalytic oxidation of phenolic substrates was proposed.Quinone imine molecules,the main products of catalytic oxidation reaction,can be adsorbed on the surface of CdTe QDs,resulting in their fluorescence quenching.A dual function of catalytic oxidation and fluorescence sensing was developed for the determination of dichlorophenol(DCP)based on the Fe(Ⅲ)PcTs-BuOOH-CdTe QDs system.The linear detection range of DCP was 1×10^(-6)-1.3×10^(-4) mol/L,and the detection limit 2.4×10^(-7) mol/L.This method was characterized by high selectivity,good repeatability and desirable stability,presenting promising potentials for analyzing DCP concentration in real water samples.
文摘Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFE0203802)Natural Science Foundation of Hubei Province, China (Grant No.2022CFA031)Dongguan Innovative Research Team Program (2020607101007)。
文摘Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.