The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by me...The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.展开更多
基金the National Natural Science Foundation of China (No.50501011, G 2000067207-1)Postdoctoral Research Foundation of China (37th batch, No.2005037079)
文摘The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.