Information on the binding of organic ligands to metal (hydr)oxide surfaces is useful for understanding the adsorption behaviour of natural organic matter on metal (hydr)oxide. In this study, benzoate and salicyla...Information on the binding of organic ligands to metal (hydr)oxide surfaces is useful for understanding the adsorption behaviour of natural organic matter on metal (hydr)oxide. In this study, benzoate and salicylate were employed as the model organic ligands and aluminum hydroxide as the metal hydroxide. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra revealed that the ligands benzoate and salicylate do coordinate directly with the surface of hydrous aluminum hydroxide, thereby forming innersphere surface complexes. It is concluded that when the initial pH is acidic or neutral, monodentate and bridging complexes are to be formed between benzoate and aluminum hydroxide while bridging complexes predominate when the initial pH is alkalic. Monodentate and bridging complexes can be formed at pH 5 while precipitate and bridging complexes are formed at pH 7 when salicylate anions are adsorbed on aluminum hydroxide. The X-ray photoelectron (XP) spectra demonstrated the variation of C 1 s binding energy in the salicyate and phenolic groups before and after adsorption. It implied that the benzoate ligands are adsorbed through the complexation between carboxylate moieties and the aluminum hydroxide surface, while both carboxylate group and phenolic group are involved in the complexation reaction when salicylate is adsorbed onto aluminum hydroxide. The information offered by the XPS confirmed the findings obtained with ATR-FTIR.展开更多
The thermal stability of latent resin systems, cycloaliphatic epoxy/4,4'- dihydroxydiphenylsulfone/aluminum complexes, was investigated by dynamic differential scanning calorimetry (DSC) analysis. Experiments were ...The thermal stability of latent resin systems, cycloaliphatic epoxy/4,4'- dihydroxydiphenylsulfone/aluminum complexes, was investigated by dynamic differential scanning calorimetry (DSC) analysis. Experiments were conducted under non-isothermal condition in a nitrogen atmosphere at the heating rate of 10, 20, 30 and 40 ℃/min, respectively. TG curves showed that, in the temperature range of 25 to 600 ℃, the stability of the resin systems could be enhanced by increasing the length of the aliphatic chain in the initiator. Both the Kissinger method and the Ozawa-Flyrm-Wall method were employed to calculate activation energies of the decomposition reaction, and the values obtained from the two methods were compared. Moreover, the corresponding reaction mechanism was identified by the Achar differential method and the Coats- Redfem integral method. The experimental results showed that these four methods were reliable and effective to study the kinetics of the thermal decomposition reaction; and the most probable thermal decomposition mechanism of the resin systems we proposed was found to comply with Mampel power law (m=1).展开更多
Complex aluminum hydrides have been widely studied as potential hydrogen storage materials but also,for some time now, for electrochemical applications. This review summarizes the crystal structures of alkali and alka...Complex aluminum hydrides have been widely studied as potential hydrogen storage materials but also,for some time now, for electrochemical applications. This review summarizes the crystal structures of alkali and alkaline earth aluminum hydrides and correlates structure properties with physical and chemical properties of the hydride compounds. The crystal structures of the alkali metal aluminum hydrides change significantly during the stepwise dehydrogenation. The general pathway follows a transformation of structures built of isolated [AlH4]- tetrahedra to structures built of isolated [Al H6]3- octahedra.The crystal structure relations in the group of alkaline earth metal aluminum hydrides are much more complicated than those of the alkali metal aluminum hydrides. The structures of the alkaline earth metal aluminum hydrides consist of isolated tetrahedra but the intermediate structures exhibit chains of cornershared octahedra. The coordination numbers within the alkali metal group increase with cation sizes which goes along with an increase of the decomposition temperatures of the primary hydrides. Alkaline earth metal hydrides have higher coordination numbers but decompose at slightly lower temperatures than their alkali metal counterparts. The decomposition pathways of alkaline metal aluminum hydrides have not been studied in all cases and require future research.展开更多
For geochemical purposes, complex aluminum compounds in coal organic matter in different types of coal were identified by solid state nuclear magnetic resonance measurements of <sup>27</sup>Al. Low ash sam...For geochemical purposes, complex aluminum compounds in coal organic matter in different types of coal were identified by solid state nuclear magnetic resonance measurements of <sup>27</sup>Al. Low ash samples of anthracites, bituminous coals and altered coals from the Czech Republic, Russia, Ukraine, China and Australia were tested;further, low ash lignite and xylite from the Czech Republic and gagatite from Poland were analyzed. In acquired <sup>27</sup>Al MAS NMR spectra, two significant peaks at chemical shifts were recorded, at 3.5 - 4 and 13.5 - 15 ppm. It was found that the significant peak at chemical shift at 3.5 - 4 ppm in spectra of bituminous coals, lignite, gagatite and a thermally weakly altered coal corresponds to that obtained for triaquo-hydroxo-diphenoxido-Aluminum(III) complex. The existence of triaquo-triphenoxido-Aluminum(III) complex in the spec- tra of anthracites, some bituminous coals and another thermally altered coal can be approved by the chemical shift at 13.5 - 15 ppm. These findings indicate that at least two different Al complexes were identified in coal organic matter. Further it was found that these complexes are concentrated in vitrinite fraction (alicyclic-aromatic part of coal), notably in collotelinite (gelified and homogenous vitrinite constituent). Ways of Al complexes formation in coal are suggested and their thermal stability is discussed.展开更多
Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity ...Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity and functionality of the novel energetic nanocomposites are still limited.In this work,spray crystallization(SC)method was used to prepare novel energetic nanocomposites,the high-energy metal-organic complex[Ni(CHZ)_(3)](ClO_(4))_(2)(CHZ=1,3-diaminourea)was composited with nanoaluminum(n-Al).Results showed that n-Al/[Ni(CH_(2))_(3)](ClO_(4))_(2)energetic nanocomposites prepared by SC method increased heat release to 2977.6 J/g and peak pressure to 3.91 MPa with higher pressurization rate(1324.06 MPa/s),decreased sensitivity thresholds(>100 mJ)to electrostatic discharge(ESD)and enhanced detonation ability compared with[Ni(CHZ)_(3)](ClO_(4))_(2)alone and physically mixed(PM)n-Al/[Ni(CHZ)_(3)](ClO_(4))_(2).These results proved that it is significant to introduce energetic metal-organic complexes with inherent high energy in new-concept n-Al/energetic metal-organic complexes nanocomposites through SC method for a better performance of its application.展开更多
The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quench...The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.展开更多
The very latest technique for impeller manufacture is called semi-solid moulding(SSM).Cummins Turbo Technologies Limited,together with Aluminum Complex Components Inc,developed SSM compressor wheels as a way of achiev...The very latest technique for impeller manufacture is called semi-solid moulding(SSM).Cummins Turbo Technologies Limited,together with Aluminum Complex Components Inc,developed SSM compressor wheels as a way of achieving cost and durability performance somewhere between that of cast and machined from solid(MFS) aluminium alloy wheels.Experimental results show SSM material has a superior microstructure and mechanical properties over cast and comparable to MFS materials.Component testing including durability testing,using accelerated speed cycle tests,proves SSM compressor wheels emerge as being significantly more durable than cast equivalents and approaching that of MFS impellers.Further challenges for semi-solid processing in manufacture of other complex components and other materials in automotive industry in terms of both cost and durability are also discussed.展开更多
Tea is one of the most popular beverages, consumed by over two thirds of the world’s population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum’s kn...Tea is one of the most popular beverages, consumed by over two thirds of the world’s population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum’s known adverse effect on human health. Investigation of the interactions of catechins with Al3+ showed that during the interaction of catechins with Al3+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C’s at 278 nm changed little. The ratio of Al3+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the Al-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of Al-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with Al3+ was the same as that of EGCG, with a little difference for EC. When the ratio of Al3+ to EC was <1, the complex in ratio was 1:2, but, the complex polymerized when the ratio of Al3+ to EC was >1. It was found that the ratio of Al3+ to EC in the polymer was 1:1. Polymerization of Al-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer, indicating that these compounds may reduce aluminum absorption during tea intake.展开更多
Objective To explore the effects of exposure to aluminum (AI) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo. Methods Different dosages of aluminum-maltolate complex [Al(mal)3] were g...Objective To explore the effects of exposure to aluminum (AI) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo. Methods Different dosages of aluminum-maltolate complex [Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.) injection and subchronic intraperitoneal (i.p.) injection. Following AI exposure, the hippocampal LTP were recorded by field potentiation technique in vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay. Results Acute AI treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluRz and GluR2 in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. The dose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic AI treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular pools to synaptic sites and an additional reduction in the expression of the subunits. Conclusion Al(mal)3 obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.展开更多
A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride...A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride. The simulation indicated that the permissible aluminum masked at a certain p H value was limited and hardly related to F-concentration and boric acid. It is better to control p H value below 11.5 and the aluminum concentration within 0.025 mol/L to minimize the interference of hydroxide to the fluoride ISE. The decomposition conditions of boron trifluoride by aluminum chloride were investigated. It is found that the F-detection ratio will approach 1.0 if the Al/F molar ratio is 0.3—0.7 and aluminum concentration is no more than 0.02 mol/L when heated at 80 ℃ for 10 min. In one word, hydroxide is quite fit to mask aluminum for samples which contain high content of fluoride and aluminum and the BF3 content can be successfully determined by this method.展开更多
The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and t...The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..展开更多
Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the sub...Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well,whereas isotropic hardening mode,which is widely used in sheet metal forming fields,predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.展开更多
Two kinds of complex polysilicate coagulants-polysilicate iron PSI and polysilicate ferric aluminum PSFA were prepared. The polymerization processes of PSI and PSFA were investigated under various conditions. Experime...Two kinds of complex polysilicate coagulants-polysilicate iron PSI and polysilicate ferric aluminum PSFA were prepared. The polymerization processes of PSI and PSFA were investigated under various conditions. Experimental results show that the molecular weight(M.W.) of polysilicic acid PS and the molar ratio of Fe 3+ to SiO 2 are two of the most important factors for preparing high effective coagulants PSI and PSFA. It is shown that PSI and PSFA are not only high effective, nontoxic and cheap coagulants, but also effective for decreasing the dosage of aluminum salt. The mechanism of coagulation of PSI and PSFA is also discussed in this paper.展开更多
文摘Information on the binding of organic ligands to metal (hydr)oxide surfaces is useful for understanding the adsorption behaviour of natural organic matter on metal (hydr)oxide. In this study, benzoate and salicylate were employed as the model organic ligands and aluminum hydroxide as the metal hydroxide. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra revealed that the ligands benzoate and salicylate do coordinate directly with the surface of hydrous aluminum hydroxide, thereby forming innersphere surface complexes. It is concluded that when the initial pH is acidic or neutral, monodentate and bridging complexes are to be formed between benzoate and aluminum hydroxide while bridging complexes predominate when the initial pH is alkalic. Monodentate and bridging complexes can be formed at pH 5 while precipitate and bridging complexes are formed at pH 7 when salicylate anions are adsorbed on aluminum hydroxide. The X-ray photoelectron (XP) spectra demonstrated the variation of C 1 s binding energy in the salicyate and phenolic groups before and after adsorption. It implied that the benzoate ligands are adsorbed through the complexation between carboxylate moieties and the aluminum hydroxide surface, while both carboxylate group and phenolic group are involved in the complexation reaction when salicylate is adsorbed onto aluminum hydroxide. The information offered by the XPS confirmed the findings obtained with ATR-FTIR.
基金Funded by the National Natural Science Foundation of China (Nos.50973023 and 50773016)the Program for New Century Excellent Talents in University(No.NCET-09-0060)the Aeronautical Science Foundation of China(No.2011ZF77010)
文摘The thermal stability of latent resin systems, cycloaliphatic epoxy/4,4'- dihydroxydiphenylsulfone/aluminum complexes, was investigated by dynamic differential scanning calorimetry (DSC) analysis. Experiments were conducted under non-isothermal condition in a nitrogen atmosphere at the heating rate of 10, 20, 30 and 40 ℃/min, respectively. TG curves showed that, in the temperature range of 25 to 600 ℃, the stability of the resin systems could be enhanced by increasing the length of the aliphatic chain in the initiator. Both the Kissinger method and the Ozawa-Flyrm-Wall method were employed to calculate activation energies of the decomposition reaction, and the values obtained from the two methods were compared. Moreover, the corresponding reaction mechanism was identified by the Achar differential method and the Coats- Redfem integral method. The experimental results showed that these four methods were reliable and effective to study the kinetics of the thermal decomposition reaction; and the most probable thermal decomposition mechanism of the resin systems we proposed was found to comply with Mampel power law (m=1).
文摘Complex aluminum hydrides have been widely studied as potential hydrogen storage materials but also,for some time now, for electrochemical applications. This review summarizes the crystal structures of alkali and alkaline earth aluminum hydrides and correlates structure properties with physical and chemical properties of the hydride compounds. The crystal structures of the alkali metal aluminum hydrides change significantly during the stepwise dehydrogenation. The general pathway follows a transformation of structures built of isolated [AlH4]- tetrahedra to structures built of isolated [Al H6]3- octahedra.The crystal structure relations in the group of alkaline earth metal aluminum hydrides are much more complicated than those of the alkali metal aluminum hydrides. The structures of the alkaline earth metal aluminum hydrides consist of isolated tetrahedra but the intermediate structures exhibit chains of cornershared octahedra. The coordination numbers within the alkali metal group increase with cation sizes which goes along with an increase of the decomposition temperatures of the primary hydrides. Alkaline earth metal hydrides have higher coordination numbers but decompose at slightly lower temperatures than their alkali metal counterparts. The decomposition pathways of alkaline metal aluminum hydrides have not been studied in all cases and require future research.
文摘For geochemical purposes, complex aluminum compounds in coal organic matter in different types of coal were identified by solid state nuclear magnetic resonance measurements of <sup>27</sup>Al. Low ash samples of anthracites, bituminous coals and altered coals from the Czech Republic, Russia, Ukraine, China and Australia were tested;further, low ash lignite and xylite from the Czech Republic and gagatite from Poland were analyzed. In acquired <sup>27</sup>Al MAS NMR spectra, two significant peaks at chemical shifts were recorded, at 3.5 - 4 and 13.5 - 15 ppm. It was found that the significant peak at chemical shift at 3.5 - 4 ppm in spectra of bituminous coals, lignite, gagatite and a thermally weakly altered coal corresponds to that obtained for triaquo-hydroxo-diphenoxido-Aluminum(III) complex. The existence of triaquo-triphenoxido-Aluminum(III) complex in the spec- tra of anthracites, some bituminous coals and another thermally altered coal can be approved by the chemical shift at 13.5 - 15 ppm. These findings indicate that at least two different Al complexes were identified in coal organic matter. Further it was found that these complexes are concentrated in vitrinite fraction (alicyclic-aromatic part of coal), notably in collotelinite (gelified and homogenous vitrinite constituent). Ways of Al complexes formation in coal are suggested and their thermal stability is discussed.
基金supported by National Natural Science Foundation of China(project no.51676100)。
文摘Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity and functionality of the novel energetic nanocomposites are still limited.In this work,spray crystallization(SC)method was used to prepare novel energetic nanocomposites,the high-energy metal-organic complex[Ni(CHZ)_(3)](ClO_(4))_(2)(CHZ=1,3-diaminourea)was composited with nanoaluminum(n-Al).Results showed that n-Al/[Ni(CH_(2))_(3)](ClO_(4))_(2)energetic nanocomposites prepared by SC method increased heat release to 2977.6 J/g and peak pressure to 3.91 MPa with higher pressurization rate(1324.06 MPa/s),decreased sensitivity thresholds(>100 mJ)to electrostatic discharge(ESD)and enhanced detonation ability compared with[Ni(CHZ)_(3)](ClO_(4))_(2)alone and physically mixed(PM)n-Al/[Ni(CHZ)_(3)](ClO_(4))_(2).These results proved that it is significant to introduce energetic metal-organic complexes with inherent high energy in new-concept n-Al/energetic metal-organic complexes nanocomposites through SC method for a better performance of its application.
基金Project(zzyjkt2013-10B)supported by the Foundation of State Key Laboratory of High-performance&Complicated Manufacturing,ChinaProject(51275533)supported by the National Natural Science Foundation of China
文摘The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.
文摘The very latest technique for impeller manufacture is called semi-solid moulding(SSM).Cummins Turbo Technologies Limited,together with Aluminum Complex Components Inc,developed SSM compressor wheels as a way of achieving cost and durability performance somewhere between that of cast and machined from solid(MFS) aluminium alloy wheels.Experimental results show SSM material has a superior microstructure and mechanical properties over cast and comparable to MFS materials.Component testing including durability testing,using accelerated speed cycle tests,proves SSM compressor wheels emerge as being significantly more durable than cast equivalents and approaching that of MFS impellers.Further challenges for semi-solid processing in manufacture of other complex components and other materials in automotive industry in terms of both cost and durability are also discussed.
文摘Tea is one of the most popular beverages, consumed by over two thirds of the world’s population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum’s known adverse effect on human health. Investigation of the interactions of catechins with Al3+ showed that during the interaction of catechins with Al3+, the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C’s at 278 nm changed little. The ratio of Al3+ to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the Al-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of Al-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with Al3+ was the same as that of EGCG, with a little difference for EC. When the ratio of Al3+ to EC was <1, the complex in ratio was 1:2, but, the complex polymerized when the ratio of Al3+ to EC was >1. It was found that the ratio of Al3+ to EC in the polymer was 1:1. Polymerization of Al-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer, indicating that these compounds may reduce aluminum absorption during tea intake.
基金supported by the Natural Science Foundation of China(NSFC,30972512 and 81202182)the Research Foundation for the Doctoral Program of Higher Education(20121417110002)
文摘Objective To explore the effects of exposure to aluminum (AI) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo. Methods Different dosages of aluminum-maltolate complex [Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.) injection and subchronic intraperitoneal (i.p.) injection. Following AI exposure, the hippocampal LTP were recorded by field potentiation technique in vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay. Results Acute AI treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluRz and GluR2 in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. The dose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic AI treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular pools to synaptic sites and an additional reduction in the expression of the subunits. Conclusion Al(mal)3 obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.
基金Supported by the Independent Innovation Fund of Tianjin University(No.1307)
文摘A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride. The simulation indicated that the permissible aluminum masked at a certain p H value was limited and hardly related to F-concentration and boric acid. It is better to control p H value below 11.5 and the aluminum concentration within 0.025 mol/L to minimize the interference of hydroxide to the fluoride ISE. The decomposition conditions of boron trifluoride by aluminum chloride were investigated. It is found that the F-detection ratio will approach 1.0 if the Al/F molar ratio is 0.3—0.7 and aluminum concentration is no more than 0.02 mol/L when heated at 80 ℃ for 10 min. In one word, hydroxide is quite fit to mask aluminum for samples which contain high content of fluoride and aluminum and the BF3 content can be successfully determined by this method.
基金TheNationalNaturalScienceFoundationofChina (No .2 96 770 0 4)
文摘The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..
基金Project(50475004) supported by the National Natural Science Foundation of China
文摘Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well,whereas isotropic hardening mode,which is widely used in sheet metal forming fields,predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.
文摘Two kinds of complex polysilicate coagulants-polysilicate iron PSI and polysilicate ferric aluminum PSFA were prepared. The polymerization processes of PSI and PSFA were investigated under various conditions. Experimental results show that the molecular weight(M.W.) of polysilicic acid PS and the molar ratio of Fe 3+ to SiO 2 are two of the most important factors for preparing high effective coagulants PSI and PSFA. It is shown that PSI and PSFA are not only high effective, nontoxic and cheap coagulants, but also effective for decreasing the dosage of aluminum salt. The mechanism of coagulation of PSI and PSFA is also discussed in this paper.