期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
LOW TEMPERATURE ALUMINUM FLOATING ELECTROLYSIS IN HEAVY ELECTROLYTE Na_3AlF_6-AlF_3-BaC1_2-NaCl BATH SYSTEM 被引量:4
1
作者 H.M. Lu and K.M. Fang Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China Z.X. Qiu Department of Nonferrous Metallurgy, Northeastern University, Shenyang 110006, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期949-954,共6页
Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The exper... Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising. 展开更多
关键词 low temperature aluminum floating electrolysis Na_3AlF_6- AlF_3BaC1_2-NaCl bath system current efficiency physico-chemical property
下载PDF
EFFECT OF Cu-Ni CONTENT ON THE CORROSION RESISTANCE OF(Cu-Ni)/(10NiO-90NiFe204)CERMET INERT ANODE FOR ALUMINUM ELECTROLYSIS 被引量:6
2
作者 Z.L. Tian Y.Q. Lai J. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第1期72-78,共7页
(Cu-Ni)/(10NiO-90NiFe204) cermet inert anodes containing metal Cu-Ni0, 5, 10, 15 and 20 wt pct were prepared and their corrosion resistance to Na3AlF6-Al2O3 melts was investigated. The results indicate that the co... (Cu-Ni)/(10NiO-90NiFe204) cermet inert anodes containing metal Cu-Ni0, 5, 10, 15 and 20 wt pct were prepared and their corrosion resistance to Na3AlF6-Al2O3 melts was investigated. The results indicate that the content of metal Cu-Ni has little effect on the steady-state concentration of Ni in the electrolyte and the values could not be used to effectively differentiate their corrosion resistance. The steady-state concentration of Fe decreases from 304×10^-6 to 168×10^-6 and that of Cu increases from 21×10^-6 to 71×10^-6 with the content of metal Cu-Ni increasing from 0 to 20 wt pct. Post-examination shows that metallic phase Cu-Ni is corroded preferentially during electrolysis and many pores are left at the anode surface. Considering the corrosion resistance and electrical conductivity, the cermet containing metal Cu-Ni 5 wt pct should be selected and studied further. 展开更多
关键词 aluminum electrolysis Inert anode NiFe2O4 based cermet Corrosion resistance
下载PDF
EFFECT OF STRUCTURAL PARAMETERS ON THE THERMAL STRESS OF A NiFe_(2)O_(4)-BASED CERMET INERT ANODE IN ALUMINUM ELECTROLYSIS 被引量:4
3
作者 J. Li Z.G. Wang Y.Q. Lai Y.Y. Wu S.L. Ye 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期139-147,共9页
Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working co... Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress, the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated, the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters. 展开更多
关键词 inert anode thermal stress structural parameter aluminum electrolysis
下载PDF
Electrical Conductivity and Corrosion Resistanceof ZnFe _(2)O _(4) Based Materials Used as Inert Anodefor Aluminum Electrolysis 被引量:3
4
作者 YU Xian-jin ZHANG Guang-li +2 位作者 QIU Zhu-xian ZHAO Min-shou SU Qiang 《Advances in Manufacturing》 SCIE CAS 1999年第3期251-254,共4页
ZnFe 2O 4 and ZnFe 2O 4 based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni 2O 3... ZnFe 2O 4 and ZnFe 2O 4 based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni 2O 3 CuO, Cu, ZnO and CeO 2 would increase the electrical conductivity, and the ZnFe 2O 4 based anodes with these additives were of good corrosion resistance. The current density on anode, the mole ratio of NaF/AlF 3 (MR) and the content of alumina in the bath effect the anode corrosion rate in different way. 展开更多
关键词 aluminum electrolysis ZnFe _(2)O _(4) based materials inert anode for aluminum electrolysis
下载PDF
A Cell Condition-Sensitive Frequency Segmentation Method Based on the Sub-Band Instantaneous Energy Spectrum of Aluminum Electrolysis Cell Voltage 被引量:1
5
作者 Zhaohui Zeng Weihua Gui +3 位作者 Xiaofang Chen Yongfang Xie Hongliang Zhang Yubo Sun 《Engineering》 SCIE EI 2021年第9期1282-1292,共11页
Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell vol... Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell voltage.In this paper,the frequency segmentation of cell voltage is used as the basis for designing filters to obtain these parameters.Based on the qualitative analysis of the cell voltage,the sub-band instantaneous energy spectrum(SIEP)is first proposed,which is then used to quantitatively represent the characteristics of the designated frequency bands of the cell voltage under various cell conditions.Ultimately,a cell condition-sensitive frequency segmentation method is given.The proposed frequency segmentation method divides the effective frequency band into the[0,0.001]Hz band of lowfrequency signals and the[0.001,0.050]Hz band of low-frequency noise,and subdivides the lowfrequency noise into the[0.001,0.010]Hz band of metal pad abnormal rolling and the[0.01,0.05]Hz band of sub-low-frequency noise.Compared with the instantaneous energy spectrum based on empirical mode decomposition,the SIEP more finely represents the law of energy change with time in any designated frequency band within the effective frequency band of the cell voltage.The proposed frequency segmentation method is more sensitive to cell condition changes and can obtain more elaborate details of online cell condition information,thus providing a more reliable and accurate online basis for cell condition monitoring and control decisions. 展开更多
关键词 Sub-band instantaneous energy spectrum Cell condition-sensitive frequency band Frequency segmentation Metal pad abnormal rolling aluminum electrolysis
下载PDF
Effect of aluminum-containing additives on the reactivity in air and CO_2 of carbon anode for aluminum electrolysis
6
作者 LAI Yanqing LI Jie +1 位作者 LI Qingyu DING Fengqi School of Metalling Science and Engineering, Central South University, Changsha 410083, China 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期109-114,共6页
Airburn reaction and carboxy reaction result in the excess consumption ofcarbon anode in aluminum electrolysis. To reduce the excess carbon consumption, carbon anode wasdoped with aluminum-containing additives, such a... Airburn reaction and carboxy reaction result in the excess consumption ofcarbon anode in aluminum electrolysis. To reduce the excess carbon consumption, carbon anode wasdoped with aluminum-containing additives, such as Al, Al_4C_3, AlF_3 and Al_2O_3. Their reactivityin air and CO_2 was determined with an isothermal-gravimetric method to study the effect ofaluminum-containing additives on the reactivity in air and CO_2 of carbon anode. Results shown thatthe airburn reactivity at 450℃ and carboxy reactivity at 970℃ of carbon anode both decreased withAl-containing additives adding, while shown a minimum with the amount of Al_4C_3, AlF_3 and Al_2O_3increasing. However, all Al-containing additives increase the airburn reactivity at 550℃ of carbonanodes. Coke yield measurement and XRD examination with aluminum containing additives doped pitchcokes revealed that the effect of Al-containing additives on the airburn reactivity and carboxyreactivity of carbon anode would result from chemical factors and structural factors. 展开更多
关键词 aluminum electrolysis aluminum-containing additives REACTIVITY carbonanode
下载PDF
Current Efficiency of Low Temperature Aluminum Electrolysis Studied by Neural Network
7
作者 Huimin Lu Zuxian Qiu +2 位作者 Keming Fang Fuming Wang Yanruo Hong( Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China)( Department of Nonferrous Metallurgy, Northeastern University, Shenyang 110006, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第2期107-110,共4页
A prediction model for Current Efficiency (CE) of low temperature aluminum electrolysis (LTAE) with the low molar ratioelectfolyte of Na3AIF6-AIF3 - CaF2-MgF2-LiF -Al2O3 system was investigated based on artificial neu... A prediction model for Current Efficiency (CE) of low temperature aluminum electrolysis (LTAE) with the low molar ratioelectfolyte of Na3AIF6-AIF3 - CaF2-MgF2-LiF -Al2O3 system was investigated based on artificial neural network principles. The nonlinearmapping between CE of LATE and various electrolytic conditions was obtained from a number of experimental data and used to predictCE of LATE. The trsined neural networks possessed high precision and resulted in a good predicting effect. As a result, attificial neuralnetworks as a new cooperating and predicting technology provide a new approach to the further studies on low temperature aluminumelectrolysis. 展开更多
关键词 low temperatre aluminum electrolysis current efficiency neural network prediction model low molar ratio electrolyte
下载PDF
THERMAL STRESSES RELAXATION DESIGN OF Ni/NiFe_(2)O_(4) SYSTEM FUNCTIONALLY GRADED CERMET INERT ANODE 被引量:4
8
作者 J. Li Q.S. Zhang Y.Q. Lai S.L. Ye Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期635-641,共7页
The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary co... The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary condition during high-temp (955℃) electrolysis were calculated using the finite-element software ANSYS, the influence of different parameters on the distribution of the thermal stresses were analyzed. The results showed that, during the process of thermal shock, the thermal hoop tensile stress on the surface of the anode is very large, which is possibly the major cause of anode crack; when the radius of the anode is between 0.05-0.15m, a range that can be realized by recent manufacturing technology, the optimum composition distribution exponent p is 0.25; The hoop tensile stresses reduce with the decrease of anode scale and also decrease with the decrease of the convection coefficient between the electrolyte and the anode. 展开更多
关键词 functionally graded material (FGM) transient thermal stresses ANSYS inert anode aluminum electrolysis
下载PDF
Electrocatalysis of carbon anode in aluminium electrolysis 被引量:4
9
作者 LAIYanqing LIUYexiang +1 位作者 YANGJianhong THONSTADJomar 《Rare Metals》 SCIE EI CAS CSCD 2002年第2期117-122,共6页
The anodic over voltage of the carbon anode in aluminumelectrolysis is of the order of 0.6 V at normal current densities.However, it can be reduced somewhat by doping the anode carbon withvarious inorganic compounds. ... The anodic over voltage of the carbon anode in aluminumelectrolysis is of the order of 0.6 V at normal current densities.However, it can be reduced somewhat by doping the anode carbon withvarious inorganic compounds. A new apparatus was designed to improvethe precision of over voltage measurements. Anodes were doped withMgAl_2O_4 and AlF_3 both by impregnation of the coke and by addingpowder, and the measured over voltage was compared with that ofUndoped samples. For prebake type anodes baked at around 1150 deg. C,the anodic overvoltage was reduced by 40-60 mV, And for Soderbergtype anodes, baked at 950 deg. C, by 60-80 mV. 展开更多
关键词 ELECTROCATALYSIS carbon anode aluminum electrolysis
下载PDF
HYDRAULIC MODEL OF A NEW BIPOLAR CELL FOR ALUMINUM PRODUCTION
10
作者 Gao Zhaosheng Li Guoxun Shen Jianyun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1996年第1期16-20,共5页
The electrolyte circulations in monopolar cell and two-compartment bipolar cell with submerged electrodes were described by a hydraulic model.The influence of current density,electrode tilt,anode-cathode distance(ACD)... The electrolyte circulations in monopolar cell and two-compartment bipolar cell with submerged electrodes were described by a hydraulic model.The influence of current density,electrode tilt,anode-cathode distance(ACD)and immersion depth of electrodes on the electrolyte circulation velocities between electrodes had been studied.Results demonstrated that the flow rates in the two compartments of bipolar cell were very different,which provided important information for the structure design of bipolar cell. 展开更多
关键词 aluminum electrolysis hydraulic model bipolar cell
下载PDF
A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition 被引量:13
11
作者 Weichao Yue Xiaofang Chen +2 位作者 Weihua Gui Yongfang Xie Hongliang Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第3期414-428,共15页
Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accur... Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accurate RCA of abnormal aluminum electrolysis cell condition is the precondition of improving current efficiency. RCA of abnormal condition is a complex work of multi-source knowledge fusion, which is difficult to ensure the RCA accuracy of abnormal cell condition because of dwindling and frequent flow of experienced technicians. In view of this, a method based on Fuzzy- Bayesian network to construct multi-source knowledge solidification reasoning model is proposed. The method can effectively fuse and solidify the knowledge, which is used to analyze the cause of abnormal condition by technicians providing a clear and intuitive framework to this complex task, and also achieve the result of root cause automatically. The proposed method was verified under 20 sets of abnormal cell conditions, and implements root cause analysis by finding the abnormal state of root node, which has a maximum posterior probability by Bayesian diagnosis reasoning. The accuracy of the test results is up to 95%, which shows that the knowledge reasoning feasibility for RCA of aluminum electrolysis cell. 展开更多
关键词 abnormal aluminum electrolysis cell condi- tion Fuzzy-Bayesian network multi-source knowledge solidification and reasoning root cause analysis
原文传递
EFFECT OF MnO_(2) ADDITIVE ON PERFORMANCES OF NiFe_(2)O_(4) SPINEL BASED INERT ANODE 被引量:2
12
作者 W.L. Jiao L. Zhang G. C. Yao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期603-608,共6页
The NiFe2O4 inert anode is synthesized by high-temperature solid-state reaction method using NiO and Fe2O3 as main raw materials and adding MnO2 powder as additive. Archimedes method using water immersion technique is... The NiFe2O4 inert anode is synthesized by high-temperature solid-state reaction method using NiO and Fe2O3 as main raw materials and adding MnO2 powder as additive. Archimedes method using water immersion technique is used to measure the sintering performances of sampies. The static thermal corrosion rates of samples are measured by weight loss. SEM is employed for the observation of material microstructure, and phase structure of the sample surface after corrosion is determined by XRD. The experimental results indicate that a suitable MnO2 additive content is 2%, while the sintering performance is the best, and the static thermal corrosion rate is the lowest. Because of MnO2 dopant enriching at crystal boundary, the corrosion reaction of molten salt to crystal grain creates Mn2AlO4 phase, which is denser than NiFe2O4 phase, and prevents the cryolite molten salt to penetrate into the inert anode, thus reducing the corrosion. 展开更多
关键词 nickel ferrite spinel inert anode corrosion resistance aluminum electrolysis
下载PDF
Effect of Yb_2O_3 doping on the grain boundary of NiFe_2O_4–10NiO-based cermets after sintering
13
作者 Han-bing He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第12期1334-1341,共8页
xYb2O3-15(20Ni-Cu)/(85 -x)(NiFe2O4-10NiO) (x = 0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect ofYb2O3 doping on the grain boundary of the cerm... xYb2O3-15(20Ni-Cu)/(85 -x)(NiFe2O4-10NiO) (x = 0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect ofYb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), and electron probe microanalysis (EPMA), YbFeO3 was produced along the grain boundary. The YbFeO3 was concluded to not only have formed from the interaction between the NiFe2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiFe2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the production of YbFeO3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance. 展开更多
关键词 cermets ytterbium oxide DOPING grain boundaries aluminum electrolysis
下载PDF
Cathodic electrochemical behavior in Na_3AlF_6-Al_2O_3-LiF-based melts at tungsten electrode with various cryolite ratios 被引量:4
14
作者 Shao-Hu Tao Yue-Zhong Di +3 位作者 Jian-Ping Peng Ke-Jia Liu Ying-Long Li Nai-Xiang Feng 《Rare Metals》 SCIE EI CAS CSCD 2018年第1期40-46,共7页
The cathodic behavior at tungsten electrode in Na3AlF6-Al2O3-LiF-based melt with various cryolite ratios was investigated by means of potentiodynamic cathodic polarization, potentiostatic electrolysis, chronopotentiom... The cathodic behavior at tungsten electrode in Na3AlF6-Al2O3-LiF-based melt with various cryolite ratios was investigated by means of potentiodynamic cathodic polarization, potentiostatic electrolysis, chronopotentiometry, and open-circuit chronopotentiometry. The results show that the formation process of Al-W intermetallic compound is controlled by both diffusion and charge transfer when the cryolite ratio is below 2.5, and is completely controlled by diffusion when cryolite ratio is above2.5. The deposition process of metal aluminum is completely charge-transfer controlled. Sodium vapor releases along with the deposition of metal aluminum as crylite ratio increases, which leads to a great influence on current efficiency. When the cryolite ratio is lower than 2.0, the critical cathodic current density of deposited aluminum at tungsten electrode is about 150 mA·cm^(-2),but the current density is above 200 mA·cm^(-2) under other experimental conditions. A higher cryolite ratio can cause a higher cathodic overvoltage. The relative content of Al layer is higher with the decrease of cryolite ratio, and Al layer easily strips into the molten salt when the cryolite ratio is higher than 2.5. 展开更多
关键词 LiF Cryolite ratio aluminum electrolysis Cathodic electrochemistry
原文传递
Electrolytic properties and element migration in Ni-TiB_(2)/Al_(2)O_(3)composite cathode
15
作者 Yu-Dong Liang Li-Jun Wang +4 位作者 Deng-Peng Chai Sheng-Zhong Bao Ting-Ting Niu Jun-Wei Wang Ying Liu 《Rare Metals》 SCIE EI CAS CSCD 2021年第1期57-64,共8页
With alumina sol as binder and Ni metal as sintering aids,the Ni-TiB_(2)/Al_(2)O_(3) composite cathode material for aluminum electrolysis was prepared by coldpressed sintering.The mechanical properties of the composit... With alumina sol as binder and Ni metal as sintering aids,the Ni-TiB_(2)/Al_(2)O_(3) composite cathode material for aluminum electrolysis was prepared by coldpressed sintering.The mechanical properties of the composite cathode material were measured.Its electrolytic properties were identified by a 20-A electrolysis test.Cathode samples before and after electrolysis test were measured by energy-dispersive spectroscopy(EDS).The migration behavior of various elements in the electrolysis process was studied by phase analysis.The result shows that Ni metal can effectively fill the gap between the aggregate during the sintering process,which can improve the sintering density of the composite cathode material significantly.The voltage of the 20-A electrolysis test is stable.The impurity of aluminum liquid is 0.42%.The aluminum liquid can wet the cathode surface effectively,and the Ni-TiB_(2)/Al_(2)O_(3) composite is an ideal wettable cathode material.In the process of electrolysis,the alkali elements in the electrolyte penetrate the electrode,where K goes deeper than Na.Al generated on the cathode surface will also penetrate the cathode through the gap of the composite material,while Ni in the electrode will spread into the aluminum liquid layer. 展开更多
关键词 aluminum electrolysis TiB_(2) Alumina sol Cold-pressed sintering INFILTRATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部