Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters ...Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters of shaped charges that ensure the formation of aluminum particles in a wide velocity range(from 2.5 to 16 km/s), numerical modeling of the formation process was carried out within the framework of a two-dimensional axisymmetric problem of continuum mechanics using three different computing codes to increase the reliability of the results. The calculations consider shaped charges with a diameter of 20-100 mm with aluminum liners of various shapes. It is shown that the formation of particles with velocities close to the lower limit of the considered range is ensured by gently sloping segmental liners of degressive thickness. To form higher-velocity particles with velocities over 5 km/s, it is proposed to use combined liners, the jet-forming part of which has the shape of a hemisphere of constant thickness or the shape of a semi-ellipsoid or semi-superellipsoid of rotation of degressive thickness.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
A kind of self-protective flux cored wire has been developed for joining 960 MPa high strength steel. Weld metal containing different aluminium elements contents was obtained by changing the content of aluminum powder...A kind of self-protective flux cored wire has been developed for joining 960 MPa high strength steel. Weld metal containing different aluminium elements contents was obtained by changing the content of aluminum powder in the composition of the flux core. The strength and toughness of weld metal were tested by tensile test and impact test at different temperatures, and the influence mechanism of aluminium element on the microstructure and mechanical properties of weld metal was analyzed by means of metallographic microstructure observation and scanning electron microscope observation. The results show that aluminium element content on impact ductility of weld metal of 960 MPa high strength steel is great, but the influence on tensile strength and elongation of weld metal is little. With increasing aluminium element contents of weld metal, the impact energy of weld metal increases at first and then decreases, the best aluminium element content of weld metal is 0.2 wt.%. Aluminium oxide is easy to be formed in weld metal with low aluminium element contents, and the aluminium oxide can easily become nucleation particle for acicular ferrite. It is conducive to formation more acicular ferrite and will improve impact absorbing energy of weld metal. Aluminium nitride will easily formed in weld metal with high aluminium element content, and the coarse ferrite microstructure appears in weld metal and reduces impact energy of weld metal.展开更多
The present work demonstrates the effectiveness of combining the hydromechanical deep-drawing process with the Tailored Heat Treated Blank(THTB) technique. In the hydromechanical deep-drawing process, the fluid pres...The present work demonstrates the effectiveness of combining the hydromechanical deep-drawing process with the Tailored Heat Treated Blank(THTB) technique. In the hydromechanical deep-drawing process, the fluid pressure is used for postponing the fracture occurrence in the blank, while the THTB technique allows to create a material property gradient through a suitable artificial aging treatment carried out prior to the forming process. Since the number of process variables is large, in the present work the authors propose an optimization loop for the determination of the parameters controlling the extension of the blank regions to be subjected to the aging treatment and the temperature levels to be set during the heat treatment. The proposed methodology couples a simple finite element model(Abaqus) with a multiobjective optimization platform(mode FRONTIER). A preliminary experimental campaign was carried out for determining the effect of the aging treatment on the mechanical(through tensile tests) and deformative(through formability tests)behavior of the AC170 PX aluminum alloy. Optimization results prove the effectiveness of the adopted methodology and put in evidence that the adoption of properly aged blanks in the hydromechanical deep drawing allows to increase the limit drawing ratio and to simplify the process since it is conducted at room temperature.展开更多
文摘Testing rocket and space technology objects in ground conditions for resistance to the impact of meteoroids and fragments of space debris can be carried out using shaped charges. To substantiate the design parameters of shaped charges that ensure the formation of aluminum particles in a wide velocity range(from 2.5 to 16 km/s), numerical modeling of the formation process was carried out within the framework of a two-dimensional axisymmetric problem of continuum mechanics using three different computing codes to increase the reliability of the results. The calculations consider shaped charges with a diameter of 20-100 mm with aluminum liners of various shapes. It is shown that the formation of particles with velocities close to the lower limit of the considered range is ensured by gently sloping segmental liners of degressive thickness. To form higher-velocity particles with velocities over 5 km/s, it is proposed to use combined liners, the jet-forming part of which has the shape of a hemisphere of constant thickness or the shape of a semi-ellipsoid or semi-superellipsoid of rotation of degressive thickness.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
基金Project was supported by the 2019 Scientific Research Foundation of Liaoning Provincial Education Department (Grant No. LJJF201902)Special Research Foundation of Liaoning Equipment Manufacture College of Vocational and Technology (Grant No.2018YYYJ-5)。
文摘A kind of self-protective flux cored wire has been developed for joining 960 MPa high strength steel. Weld metal containing different aluminium elements contents was obtained by changing the content of aluminum powder in the composition of the flux core. The strength and toughness of weld metal were tested by tensile test and impact test at different temperatures, and the influence mechanism of aluminium element on the microstructure and mechanical properties of weld metal was analyzed by means of metallographic microstructure observation and scanning electron microscope observation. The results show that aluminium element content on impact ductility of weld metal of 960 MPa high strength steel is great, but the influence on tensile strength and elongation of weld metal is little. With increasing aluminium element contents of weld metal, the impact energy of weld metal increases at first and then decreases, the best aluminium element content of weld metal is 0.2 wt.%. Aluminium oxide is easy to be formed in weld metal with low aluminium element contents, and the aluminium oxide can easily become nucleation particle for acicular ferrite. It is conducive to formation more acicular ferrite and will improve impact absorbing energy of weld metal. Aluminium nitride will easily formed in weld metal with high aluminium element content, and the coarse ferrite microstructure appears in weld metal and reduces impact energy of weld metal.
文摘The present work demonstrates the effectiveness of combining the hydromechanical deep-drawing process with the Tailored Heat Treated Blank(THTB) technique. In the hydromechanical deep-drawing process, the fluid pressure is used for postponing the fracture occurrence in the blank, while the THTB technique allows to create a material property gradient through a suitable artificial aging treatment carried out prior to the forming process. Since the number of process variables is large, in the present work the authors propose an optimization loop for the determination of the parameters controlling the extension of the blank regions to be subjected to the aging treatment and the temperature levels to be set during the heat treatment. The proposed methodology couples a simple finite element model(Abaqus) with a multiobjective optimization platform(mode FRONTIER). A preliminary experimental campaign was carried out for determining the effect of the aging treatment on the mechanical(through tensile tests) and deformative(through formability tests)behavior of the AC170 PX aluminum alloy. Optimization results prove the effectiveness of the adopted methodology and put in evidence that the adoption of properly aged blanks in the hydromechanical deep drawing allows to increase the limit drawing ratio and to simplify the process since it is conducted at room temperature.