期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
KEY TECHNIQUES IN R&D OF OUT-SIZE EXTRUSION PRESS WITH OIL-DRIVEN DOUBLE ACTION 被引量:1
1
作者 ZHANG Jun YANG He +1 位作者 XIE Donggang HAN Bingtao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期36-40,共5页
A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be... A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be saved. A new technology used for decompressing by a multi-steps dynamical mode is put forward, which makes it possible to decompress the large flow-volume high-pressure oil in the main cylinders. In addition, a method for realizing the fixed mandrel process by hydraulic support is proposed and its control equation is established. Pre-tightening frame tests are carried out by over-operating pressure on 100 MN aluminium extrusion press with oil-driven double action, which is developed based on the above key techniques and is the largest press so far in the world, and the results show that the frame structure designed is reasonable and reliable, and the modem design method used is an useful tool for designing large and out-size heavy plastic forming machinery. The results of decompressing curve in main cylinder and noise inspection indicate that multi-steps dynamical mode for decompressing the large flow-volume high pressure oil is valid and reliable. Meanwhile, the fixed mandrel process is well realized based on the control equation. These key techniques have been used in the development of 125 MN aluminium extrusion press with oil-driven double action. 展开更多
关键词 extrusion Out-size press aluminum profile FEM numerical simulation
下载PDF
Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces 被引量:3
2
作者 Xiangqian Liu Huijie Liu +2 位作者 Tianhao Wang Xiangguo Wang Si Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期102-111,共10页
The AA6005A-T6 aluminum hollow extrusions were friction stir welded at a high welding speed of 2000mm/min and various axial forces. The results show that the nugget zone (NZ) is characterized by fine equiaxed grains... The AA6005A-T6 aluminum hollow extrusions were friction stir welded at a high welding speed of 2000mm/min and various axial forces. The results show that the nugget zone (NZ) is characterized by fine equiaxed grains, in which a low density of equilibrium phase β is observed. The grains in the thermo-mechanically affected zone (TMAZ) are elongated, and the highest density of dislocations and a low density of β precipitates can be found in grains. The heat affected zone (HAZ) only experiences a low thermal cycle, and a high density of β precipitates and a low density of β precipitates remain in the coarsened grains. The microhardness evolutions in the NZ, TMAZ and HAZ are governed by the grain refinement and dislocation strengthening, the dislocation and precipitation strengthening, and the precipitation and solid solution strengthening, respectively. When increasing the axial force, the changing trend of one strengthening mechanism is contrary to the other in each zone, and the microhardness increases in different zones. As a result, the tensile strength roughly increases with raising the axial force, and all joints show good tensile properties as the high welding speed inhibits the coarsening and dissolution of strengthening precipitates significantly. 展开更多
关键词 aluminum hollow extrusions High-speed friction stir welding Microstructures Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部