A self-made directional solidification device was used to fabricate d 80 mm high purity aluminum ingots. SEM and AFM were used to detect the shape of grain boundaries. The orientation of the grain was studied by X-ray...A self-made directional solidification device was used to fabricate d 80 mm high purity aluminum ingots. SEM and AFM were used to detect the shape of grain boundaries. The orientation of the grain was studied by X-ray diffractometry. The results show that the nucleation points locate at the intersections of three adjacent grains. The lattice orientation of grains does not alter in the horizontal direction, but gradually approaches the optimum growth direction in the vertical direction during the growth process. All the grains suffer the competition and only the one whose orientation is closest to the preferred direction can occupy the final growth space.展开更多
For further knowledge about the refining performance of AlTiC master alloys, Al5.5Ti0.25C and Al6.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% co...For further knowledge about the refining performance of AlTiC master alloys, Al5.5Ti0.25C and Al6.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% commercial pure aluminum(CPAl). Their performance was compared with two types of Al5Ti1B refiners whose performance was nowadays considered to be the best. These two types of master alloys show similar refining efficiency at the addition level of 0.2%. However, at the addition level of 0.5%, there still exists great performance difference between AlTiC and Al5TiB alloys in grain refinement of 99.98% and 99.995% high purity aluminum(HPAl). The growth of columnar grains is fully suppressed due to the refinement of AlTiC at the addition level of 0.5%. Also, at the same addition level, the grain refining experiments of Al3Ti0.15C and Al5Ti0.2C master alloys which have found initial commercial applications are conducted in the above-mentioned three types of pure aluminum. According to the experimental results, these two refiners of different compositions are both nonideal. The second phase particles extracted from each refiner were observed through TEM, while the nuclei of grains after grain refinement were observed through SEM. The results were analyzed through computation and comparison of the constitutional-supercooling parameter and the growth-restriction parameter whose values were determined by solute element in aluminum melt with different purity. Apparently, AlTiC master alloys with high content of Ti and C element have great refining potential.展开更多
To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained(UFG)materials with a high stacking fault energy(SFE),UFG Al processed by equal-channel angular pressing(ECAP)was...To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained(UFG)materials with a high stacking fault energy(SFE),UFG Al processed by equal-channel angular pressing(ECAP)was selected as a target material and its tensile behavior at different pre-cyclic levels D(D=N_i/N_f,where N_i and N_f are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa,respectively)along with the corresponding microstructures and deformation features were systematically studied.The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress,and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples.The yield strengths_(YS),ultimate tensile strengths_(UTS),and uniform straineexhibited a strong dependence on D when D≤20%;however,when D was in the range from 20%to 50%,no obvious change in mechanical properties was observed.The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.展开更多
Ultrafine-grained pure aluminum L2 with a mean grain size of 1.01μm was produced by equal channel angular pressing (ECAP) and annealing at 150℃ for 2h. Damping behavior of the alloy was measured using a dynamic me...Ultrafine-grained pure aluminum L2 with a mean grain size of 1.01μm was produced by equal channel angular pressing (ECAP) and annealing at 150℃ for 2h. Damping behavior of the alloy was measured using a dynamic mechanical thermal analyzer. The alloy had an excellent damping capacity Q^-1 with the ambient value being 9.8×10^-3 at 1.0Hz when the strain amplitude was 2.0×10^-5. The damping behavior of the alloy showed a non-linear damping variation tendency, that is, with an increase in temperature and a decrease of frequency, the damping capacity of the alloy increased. The damping capacity increased with the strain amplitude when the strain amplitude was less than 4.6×10^-5. When the strain amplitude was higher than 4.6×10^-5, the damping capacity became a constant and independent of strain amplitude. The high damping capacity was attributed to dislocation unpinning and a drag of dislocation on pinning points.展开更多
The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatt...The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.展开更多
Based on the assumption that the nucleation substrates are activated by constitutional undercooling generated by an adjacent grain growth and solute distribution during the initial solidification, a model for calculat...Based on the assumption that the nucleation substrates are activated by constitutional undercooling generated by an adjacent grain growth and solute distribution during the initial solidification, a model for calculation of the grain size of aluminum alloys with the grain refinement is developed, where the nucleation is dominated by two parameters, i.e. growth restriction factor Q and the undercooling parameter P. The growth restriction factor Q is proportional to the initial rate of constitutional undercooling development and can be used directly as a criterion of the grain refinement in the alloys with strong potential nucleation particles. The undercooling parameter P can be regarded as the maximum of constitutional undercooling △Tc. For weak potential nucleation particles, the use of RGS would be more accurate. The experimental data of the grain refinement of pure aluminum and AlSi7 alloys are coincident predicted results with the model.展开更多
基金Project(2002AA6070) supported by the Hi-tech Research and Development Program of China
文摘A self-made directional solidification device was used to fabricate d 80 mm high purity aluminum ingots. SEM and AFM were used to detect the shape of grain boundaries. The orientation of the grain was studied by X-ray diffractometry. The results show that the nucleation points locate at the intersections of three adjacent grains. The lattice orientation of grains does not alter in the horizontal direction, but gradually approaches the optimum growth direction in the vertical direction during the growth process. All the grains suffer the competition and only the one whose orientation is closest to the preferred direction can occupy the final growth space.
基金Project (51074033) supported by the National Natural Science Foundation of China
文摘For further knowledge about the refining performance of AlTiC master alloys, Al5.5Ti0.25C and Al6.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% commercial pure aluminum(CPAl). Their performance was compared with two types of Al5Ti1B refiners whose performance was nowadays considered to be the best. These two types of master alloys show similar refining efficiency at the addition level of 0.2%. However, at the addition level of 0.5%, there still exists great performance difference between AlTiC and Al5TiB alloys in grain refinement of 99.98% and 99.995% high purity aluminum(HPAl). The growth of columnar grains is fully suppressed due to the refinement of AlTiC at the addition level of 0.5%. Also, at the same addition level, the grain refining experiments of Al3Ti0.15C and Al5Ti0.2C master alloys which have found initial commercial applications are conducted in the above-mentioned three types of pure aluminum. According to the experimental results, these two refiners of different compositions are both nonideal. The second phase particles extracted from each refiner were observed through TEM, while the nuclei of grains after grain refinement were observed through SEM. The results were analyzed through computation and comparison of the constitutional-supercooling parameter and the growth-restriction parameter whose values were determined by solute element in aluminum melt with different purity. Apparently, AlTiC master alloys with high content of Ti and C element have great refining potential.
基金financially supported by the National Natural Science Foundation of China (Nos. 51571058, 51271054 and 51231002)the Open Foundation of Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, China (No. ATM20170001)
文摘To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained(UFG)materials with a high stacking fault energy(SFE),UFG Al processed by equal-channel angular pressing(ECAP)was selected as a target material and its tensile behavior at different pre-cyclic levels D(D=N_i/N_f,where N_i and N_f are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa,respectively)along with the corresponding microstructures and deformation features were systematically studied.The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress,and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples.The yield strengths_(YS),ultimate tensile strengths_(UTS),and uniform straineexhibited a strong dependence on D when D≤20%;however,when D was in the range from 20%to 50%,no obvious change in mechanical properties was observed.The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.
基金the National Natural Science Foundation of China (No. 59671026) Shaanxi Provincial Natural Science Foundation of China (No. 2003E1 11).
文摘Ultrafine-grained pure aluminum L2 with a mean grain size of 1.01μm was produced by equal channel angular pressing (ECAP) and annealing at 150℃ for 2h. Damping behavior of the alloy was measured using a dynamic mechanical thermal analyzer. The alloy had an excellent damping capacity Q^-1 with the ambient value being 9.8×10^-3 at 1.0Hz when the strain amplitude was 2.0×10^-5. The damping behavior of the alloy showed a non-linear damping variation tendency, that is, with an increase in temperature and a decrease of frequency, the damping capacity of the alloy increased. The damping capacity increased with the strain amplitude when the strain amplitude was less than 4.6×10^-5. When the strain amplitude was higher than 4.6×10^-5, the damping capacity became a constant and independent of strain amplitude. The high damping capacity was attributed to dislocation unpinning and a drag of dislocation on pinning points.
文摘The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.
文摘Based on the assumption that the nucleation substrates are activated by constitutional undercooling generated by an adjacent grain growth and solute distribution during the initial solidification, a model for calculation of the grain size of aluminum alloys with the grain refinement is developed, where the nucleation is dominated by two parameters, i.e. growth restriction factor Q and the undercooling parameter P. The growth restriction factor Q is proportional to the initial rate of constitutional undercooling development and can be used directly as a criterion of the grain refinement in the alloys with strong potential nucleation particles. The undercooling parameter P can be regarded as the maximum of constitutional undercooling △Tc. For weak potential nucleation particles, the use of RGS would be more accurate. The experimental data of the grain refinement of pure aluminum and AlSi7 alloys are coincident predicted results with the model.