Though silanization of aluminum powder is currently used to improve its flow properties,for use as an alternative fuel source,there are a wide range of experimental parameters for the process and not all of them have ...Though silanization of aluminum powder is currently used to improve its flow properties,for use as an alternative fuel source,there are a wide range of experimental parameters for the process and not all of them have been thoroughly explored.Until this is complete,it is unknown if the process is optimized in terms of time,efficiency,and effect.Herein,we report on a study into the effects of changes in humidity,degree of agitation,reaction temperature,and curing time upon the deposition of phenyl triethoxysilane into 20μm(d50)aluminum particles.We confirm the deposition of the coating via diffuse reflectance infrared spectroscopy and x-ray photoelectron spectroscopy.We then characterize the coated particles using apparent density measurements and Carney flow methods.Using analysis of variance,we find that,of the parameters explored,only changes in cure time and reaction temperature provide meaningful changes to the apparent density,while none of our parameters produced statistically significant changes in Carney flow values.Thus,we conclude that,when optimizing silanization of aluminum particles,environmental control of humidity is unneeded and that the reaction can be run with minimal agitation.The ability to largely ignore these parameters is a benefit to large-scale processing.展开更多
Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spheric...Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.展开更多
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and ni...Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and nickel matrix are combined well in the sheet. It can be used to prepare the observation specimen for TEM and determine the hardness of single powder particle as solidified and after heat-treated. The advantages of this method are the realization of heat treatment of powders and the TEM observation of non-interfered microstructure of powders in the size of several microns.展开更多
In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal ch...In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.展开更多
Non-vacuum storage condition has a great impact on the explosion characteristics of aluminum powders. In this paper, vacuum-packed flake and globular aluminum powders stored in a dryer after opening the vacuum package...Non-vacuum storage condition has a great impact on the explosion characteristics of aluminum powders. In this paper, vacuum-packed flake and globular aluminum powders stored in a dryer after opening the vacuum package are selected as the experimental samples, and a 20 L spherical explosion device is chosen to test the minimum explosible concentration (MEC) values of aluminum dusts under different storage time. The results show that the MEC values of two types of unoxidized aluminum powders are 30 g/m^3. The MEC values of flake and globular aluminum powders firstly go up with the increase of storage time in the dryer and then reach the maximum values of 50 g/m^3 and 60 g/m^3 at respective storage time until finally they stabilize gradually. The main reason is that the oxidation rate is faster owing to the bigger specific surface area of globular aluminum powders. Hence, the storage time has more significant effect on the MEC of globular aluminum powder than that of flake aluminum powder. After a period of time, the outer surface is oxidized to generate a layer of film, which prevents the further oxidation of aluminum powder, resulting in the temporary stability of MEC.展开更多
Influence of aluminum addition on the structures and properties of SiO_2-B_2O_3-Al_2O_3-CaO vitrified bond at low sintering temperature and high strength was discussed. FTIR and XRD analyses were used to characterize ...Influence of aluminum addition on the structures and properties of SiO_2-B_2O_3-Al_2O_3-CaO vitrified bond at low sintering temperature and high strength was discussed. FTIR and XRD analyses were used to characterize the structures of the basic vitrified bond with different contents of aluminum. The bending strength and the thermal expansion coefficients were also tested. Meanwhile, the microstructures of composite specimens at sintering temperature of 660 ℃ were observed by scanning electron microscope(SEM). The experimental results showed that the properties of vitrified bond with 1wt% aluminum were improved significantly, where the bending strength, Rockwell hardness, and thermal expansion coefficient of the vitrified bond reached 132 MPa, 63 HRB, and 6.73×10^(-6) ℃^(-1), respectively.展开更多
Under H2 atmosphere, the green strips were prepared from Al-5.8Zn-1.63Mg-2.22Cu-0.12Zr(mass fraction, %) powders by the semi-solid rolling process with a relative density from 76.1% to 88.0%. The role of temperature o...Under H2 atmosphere, the green strips were prepared from Al-5.8Zn-1.63Mg-2.22Cu-0.12Zr(mass fraction, %) powders by the semi-solid rolling process with a relative density from 76.1% to 88.0%. The role of temperature on microstructure and mechanical properties was investigated. With increasing rolling temperature from 580 to 610 °C, the disappearance of primary powder boundary and isolated pores, inter-diffusion of species and the change of grain boundary were accelerated. Moreover, the mechanism of microstructure evolution changes from the densification dominant regime to the coarsening dominant regime; the amount of η(MgZn2) phase decreased and more Al2 Cu particles precipitated at grain boundaries. The optimum temperature for semi-solid rolling of Al-5.8Zn-1.63Mg-2.22Cu-0.12 Zr powders was determined. The liquid fraction in the range of 53% to 67% corresponds with a high density level of green strips. The present experimental analysis suggests that semi-solid powder rolling can be optimized to manufacture strips with high mechanical properties.展开更多
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ e...In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.展开更多
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion...The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion model of the aluminum particles in detonation environment was established.Based on this model,a combustion control equation for aluminum particles in detonation environment was obtained.It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size,system temperature,and diffusion coefficient.The calculation result shows that a higher system temperature,larger diffusion coefficient,and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles.After considering the particle size distribution characteristics of aluminum powder,the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder,and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results.This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.展开更多
A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted...A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.展开更多
The basic formulation of Al2O3- C slide plates was65%( in mass,the same hereinafter) white fused corundum particles,25% white fused corundum fines,6% active α-Al2O3 micropowder,4% carbon black and flake graphite, a...The basic formulation of Al2O3- C slide plates was65%( in mass,the same hereinafter) white fused corundum particles,25% white fused corundum fines,6% active α-Al2O3 micropowder,4% carbon black and flake graphite, and additional 4% phenolic resin.Based on this formulation,3% Al powder,3% Si powder,and 3% Al + 3% Si powder were used to substitute equivalent white corundum fines to improve the hot mechanical properties of Al2O3- C slide plates. The specimens with dimensions of 140 mm × 25 mm × 25 mm were pressed at 150 MPa,dried at 200 ℃ for 24 h,and hot treated at 1 400 ℃ for 3 h in carbon embedded condition. Then hot modulus of rupture and thermal shock resistance of the specimens were tested and the phase compositions and microstructure were analyzed. The results show that specimen with 3% Al powder has the higher hot modulus of rupture but lower residual modulus of rupture after thermal shock than the specimen with3% Si powder; the specimen with 3% Al + 3% Si powders exhibits the highest hot modulus of rupture and the best thermal shock resistance; the change of mechanical property is closely related with the in-situ formed nonoxides: AlN in the form of bars is formed in specimens with Al powder; fibrous SiC whiskers are formed in specimens with Si powder; in the specimens with both Al and Sipowders,besides AlN and SiC whiskers,hexagonal tabular SiAlON is in-situ synthesized,which interlocks with each other.展开更多
Waste aluminum slag and oyster shell were used as raw materials to synthesize calcium hexaluminate(CA6). The effects of different source materials of CaO and sintering temperature on the structures and properties of...Waste aluminum slag and oyster shell were used as raw materials to synthesize calcium hexaluminate(CA6). The effects of different source materials of CaO and sintering temperature on the structures and properties of CA6 were investigated,respectively. The results show that compared to calcium oxide,oyster shell can lower the formation temperature of CA6,hence CA6 can be detected at 1300 ℃ by using oyster shell as the starting raw materials. Increasing the sintering temperature can promote the crystal growth. CA6 crystals show typical platelet shape,and its optimum sintering temperature falls in the 1450~1550 ℃ region. The bulk density is 1.54~1.83 g/cm^3,the apparent porosity is 44.1~55.2% and the flexural strength is 10.8~25.3 MPa.展开更多
Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(whe...Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(when Al powder addition is 4%,Si powder addition varies:1%and 2%,by mass)as additives.The effects of the Al powder and Si powder additions on the properties and microstructure of the refractories heat treated at different temperatures(1000,1400,and 1600℃for 3 h)were studied.The results show that the Al powder addition can greatly enhance the cold modulus of rupture of the samples fired at 1000 or 1400℃,and meanwhile AlN reinforcement phase forms in the matrix,which greatly improves the hot modulus of rupture of the samples at 1400℃;however,the heat treatment at 1600℃has little influence on the strength;the addition of Al powder and Si powder results in the formation of low melting point phases,greatly reducing the hot modulus of rupture.However,the low melting point phases promote sintering,which enhances the density and the cold modulus of rupture,and decreases the volume change during heating.The samples added with Al and Si all have higher cold modulus of rupture than those added with Al powder only.展开更多
The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on ...The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.展开更多
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) ...Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.展开更多
Despite the existence of conventional methods for recycling chips,solid-state techniques have become popular,whereby waste metals are directly recycled into consolidated products with the desired shapes and designs.We...Despite the existence of conventional methods for recycling chips,solid-state techniques have become popular,whereby waste metals are directly recycled into consolidated products with the desired shapes and designs.We investigated the feasibility of recycling phosphor bronze chips through a hot extrusion process using aluminum powder as a metal binder for the fabrication of a metal-fiber-reinforced aluminum matrix composite.To do so,mixtures containing 20 vol%–50 vol%of chips were prepared,cold-compacted,and extruded.The quality of the consolidated samples was evaluated by determining the density of the fabricated composites and studying their microstructures.In addition,we performed tensile and hardness tests to evaluate the mechanical properties of the fabricated composites.We also analyzed the fracture surfaces of the samples to study the fracture mechanism as a function of the volume fraction of phosphor bronze chips in the fabricated composite.The results indicated that the most effective consolidation occurred in the sample containing 20 vol%of chips extruded at 465℃in which the chips serve as ideal fibers for improving the mechanical properties,especially the ultimate tensile strength,in comparison with those of Al matrixes that contain no chips but are produced under the same conditions.展开更多
Surface composite layer was fabricated on the AZ91D substrate using the lost foam casting (LFC) process. The pre-coating layer reacted with melt substrate and formed the composite layer, and the coating was mainly c...Surface composite layer was fabricated on the AZ91D substrate using the lost foam casting (LFC) process. The pre-coating layer reacted with melt substrate and formed the composite layer, and the coating was mainly consist of alloying aluminum powder and low-temperature glass powder (PbO-ZnO-Na20). The vacuum degree, pouring temperature, mold filling process of melt, and pre-coating thickness played an important role during the formation process of composite layer. The results show that surface morphology of composite layer can be divided into three categories: alloying effect of bad and good ceramic layer, alloying effect of good and bad ceramic layer, composite layer of good quality. The main reason for bad alloying layer is that alloying pre-coating thickness is so thin that it is scoured easily and involved in the melt, in addition, it is difficult for melt to infiltrate into the alloying coating owing to the surface tension of coating when the vacuum degree is excessively low. Bad ceramic layer is because of somewhat lower pouring temperature and the thicker alloying coating, due to the absorption of heat from the melt, making low temperature glass powder pre-coating layer fuse inadequate. Thus, to get good quality composite layer, the process conditions must be appropriate, the result shows that the optimum process parameters are as follows: at a pouring temperature of 800 ~C, vacuum degree of -0.06 MPa, alloying pre-coating thickness ofO.4 mm, and low glass powder pre-coating layer thickness ofl mm.展开更多
n order to investigate the phase evolution and microstructure of aluminum containing carbon composites,- 195 graphite flake and ≤0. 074 mm aluminum powders( Al 99%,in mass,the same hereinafter) were used as main st...n order to investigate the phase evolution and microstructure of aluminum containing carbon composites,- 195 graphite flake and ≤0. 074 mm aluminum powders( Al 99%,in mass,the same hereinafter) were used as main starting materials. The mixture with 1 ∶ 1of graphite and aluminum was well mixed with additional 15% phenolic resin and then shaped in a hydraulic machine. The specimens were first dried at 250 ℃ for12 h,and then graphite-embedded fired at 800,1 000,1 200,1 400,and 1 600 ℃ for 3 h,respectively. XRD and SEM were used to characterize the phase compositions and section microstructure. The results show that at800 ℃ aluminum powder melts and reacts with carbon in resin forming granular Al4C3 at the edge of graphite;at 1 000 ℃,Al4C3 increases in amount and grows in volume,and AlN commences to form; at 1 200 ℃,some Al4C3 grows to tabular shape,and other Al4C3 nitridizes forming fibrous AlN; at 1 400 ℃,Al4C3 decreases because it is nitridized or oxidized forming fibrous AlN or Al2O3; at 1 600 ℃,Al4C3 disappears,AlN or Al2O3 gets big and coarse.展开更多
In order to tackle the shortcomings of high brittleness,hard graphitization,and poor oxidation resistance resulted from carbonization of phenolic resin of Mg O- C refractories, effects of 2 mass% spherical Ni, and2 ma...In order to tackle the shortcomings of high brittleness,hard graphitization,and poor oxidation resistance resulted from carbonization of phenolic resin of Mg O- C refractories, effects of 2 mass% spherical Ni, and2 mass% spherical Ni plus 7. 5 mass% Al composite powder on microstructure of the secondary carbon in Mg O- C refractories matrix were investigated. The results show that a large number of carbon whiskers form after the carbonization of phenolic resin with Ni powder;in the Mg O- C refractories matrix with only Ni powder,the carbon microspheres form at all treatment temperatures and change slightly with the temperature rising;the carbon whiskers begin to generate in the specimens with composite powder at 1 000 ℃,the diameter of the carbon whiskers is about 0. 4- 0. 5 μm,and the length is about 3- 4 μm,and the formed carbon whiskers increase gradually with the temperature rising.展开更多
基金the research project funded by the Office of Naval Research(Grant N3885NVONR).
文摘Though silanization of aluminum powder is currently used to improve its flow properties,for use as an alternative fuel source,there are a wide range of experimental parameters for the process and not all of them have been thoroughly explored.Until this is complete,it is unknown if the process is optimized in terms of time,efficiency,and effect.Herein,we report on a study into the effects of changes in humidity,degree of agitation,reaction temperature,and curing time upon the deposition of phenyl triethoxysilane into 20μm(d50)aluminum particles.We confirm the deposition of the coating via diffuse reflectance infrared spectroscopy and x-ray photoelectron spectroscopy.We then characterize the coated particles using apparent density measurements and Carney flow methods.Using analysis of variance,we find that,of the parameters explored,only changes in cure time and reaction temperature provide meaningful changes to the apparent density,while none of our parameters produced statistically significant changes in Carney flow values.Thus,we conclude that,when optimizing silanization of aluminum particles,environmental control of humidity is unneeded and that the reaction can be run with minimal agitation.The ability to largely ignore these parameters is a benefit to large-scale processing.
基金supported by Natural Science Foundation (Grant No.21975024)Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No.2021BS05014)。
文摘Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
文摘Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and nickel matrix are combined well in the sheet. It can be used to prepare the observation specimen for TEM and determine the hardness of single powder particle as solidified and after heat-treated. The advantages of this method are the realization of heat treatment of powders and the TEM observation of non-interfered microstructure of powders in the size of several microns.
基金Project(51401177)supported by the National Natural Science Foundation of ChinaProject(13KJD430005)supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(JSKLEDC201309)supported by Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control,China
文摘In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.
文摘Non-vacuum storage condition has a great impact on the explosion characteristics of aluminum powders. In this paper, vacuum-packed flake and globular aluminum powders stored in a dryer after opening the vacuum package are selected as the experimental samples, and a 20 L spherical explosion device is chosen to test the minimum explosible concentration (MEC) values of aluminum dusts under different storage time. The results show that the MEC values of two types of unoxidized aluminum powders are 30 g/m^3. The MEC values of flake and globular aluminum powders firstly go up with the increase of storage time in the dryer and then reach the maximum values of 50 g/m^3 and 60 g/m^3 at respective storage time until finally they stabilize gradually. The main reason is that the oxidation rate is faster owing to the bigger specific surface area of globular aluminum powders. Hence, the storage time has more significant effect on the MEC of globular aluminum powder than that of flake aluminum powder. After a period of time, the outer surface is oxidized to generate a layer of film, which prevents the further oxidation of aluminum powder, resulting in the temporary stability of MEC.
基金Funded by the National“Twelfth Five-Year”Plan for Science&Technology Support of China(2012BAA08B00)
文摘Influence of aluminum addition on the structures and properties of SiO_2-B_2O_3-Al_2O_3-CaO vitrified bond at low sintering temperature and high strength was discussed. FTIR and XRD analyses were used to characterize the structures of the basic vitrified bond with different contents of aluminum. The bending strength and the thermal expansion coefficients were also tested. Meanwhile, the microstructures of composite specimens at sintering temperature of 660 ℃ were observed by scanning electron microscope(SEM). The experimental results showed that the properties of vitrified bond with 1wt% aluminum were improved significantly, where the bending strength, Rockwell hardness, and thermal expansion coefficient of the vitrified bond reached 132 MPa, 63 HRB, and 6.73×10^(-6) ℃^(-1), respectively.
基金Projects(50774035,51274107)supported by the National Natural Science Foundation of China
文摘Under H2 atmosphere, the green strips were prepared from Al-5.8Zn-1.63Mg-2.22Cu-0.12Zr(mass fraction, %) powders by the semi-solid rolling process with a relative density from 76.1% to 88.0%. The role of temperature on microstructure and mechanical properties was investigated. With increasing rolling temperature from 580 to 610 °C, the disappearance of primary powder boundary and isolated pores, inter-diffusion of species and the change of grain boundary were accelerated. Moreover, the mechanism of microstructure evolution changes from the densification dominant regime to the coarsening dominant regime; the amount of η(MgZn2) phase decreased and more Al2 Cu particles precipitated at grain boundaries. The optimum temperature for semi-solid rolling of Al-5.8Zn-1.63Mg-2.22Cu-0.12 Zr powders was determined. The liquid fraction in the range of 53% to 67% corresponds with a high density level of green strips. The present experimental analysis suggests that semi-solid powder rolling can be optimized to manufacture strips with high mechanical properties.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 11802136)。
文摘In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772058)。
文摘The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion model of the aluminum particles in detonation environment was established.Based on this model,a combustion control equation for aluminum particles in detonation environment was obtained.It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size,system temperature,and diffusion coefficient.The calculation result shows that a higher system temperature,larger diffusion coefficient,and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles.After considering the particle size distribution characteristics of aluminum powder,the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder,and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results.This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.
基金funded by the National Natural Science Foundation of China(Grant No.11972018)the Defense Pre-Research Joint Foundation of Chinese Ordnance Industry(Grant No.6141B012858)。
文摘A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.
文摘The basic formulation of Al2O3- C slide plates was65%( in mass,the same hereinafter) white fused corundum particles,25% white fused corundum fines,6% active α-Al2O3 micropowder,4% carbon black and flake graphite, and additional 4% phenolic resin.Based on this formulation,3% Al powder,3% Si powder,and 3% Al + 3% Si powder were used to substitute equivalent white corundum fines to improve the hot mechanical properties of Al2O3- C slide plates. The specimens with dimensions of 140 mm × 25 mm × 25 mm were pressed at 150 MPa,dried at 200 ℃ for 24 h,and hot treated at 1 400 ℃ for 3 h in carbon embedded condition. Then hot modulus of rupture and thermal shock resistance of the specimens were tested and the phase compositions and microstructure were analyzed. The results show that specimen with 3% Al powder has the higher hot modulus of rupture but lower residual modulus of rupture after thermal shock than the specimen with3% Si powder; the specimen with 3% Al + 3% Si powders exhibits the highest hot modulus of rupture and the best thermal shock resistance; the change of mechanical property is closely related with the in-situ formed nonoxides: AlN in the form of bars is formed in specimens with Al powder; fibrous SiC whiskers are formed in specimens with Si powder; in the specimens with both Al and Sipowders,besides AlN and SiC whiskers,hexagonal tabular SiAlON is in-situ synthesized,which interlocks with each other.
基金Supported by the National Natural Science Foundation of China(Nos.51102047 and 51472050)
文摘Waste aluminum slag and oyster shell were used as raw materials to synthesize calcium hexaluminate(CA6). The effects of different source materials of CaO and sintering temperature on the structures and properties of CA6 were investigated,respectively. The results show that compared to calcium oxide,oyster shell can lower the formation temperature of CA6,hence CA6 can be detected at 1300 ℃ by using oyster shell as the starting raw materials. Increasing the sintering temperature can promote the crystal growth. CA6 crystals show typical platelet shape,and its optimum sintering temperature falls in the 1450~1550 ℃ region. The bulk density is 1.54~1.83 g/cm^3,the apparent porosity is 44.1~55.2% and the flexural strength is 10.8~25.3 MPa.
文摘Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(when Al powder addition is 4%,Si powder addition varies:1%and 2%,by mass)as additives.The effects of the Al powder and Si powder additions on the properties and microstructure of the refractories heat treated at different temperatures(1000,1400,and 1600℃for 3 h)were studied.The results show that the Al powder addition can greatly enhance the cold modulus of rupture of the samples fired at 1000 or 1400℃,and meanwhile AlN reinforcement phase forms in the matrix,which greatly improves the hot modulus of rupture of the samples at 1400℃;however,the heat treatment at 1600℃has little influence on the strength;the addition of Al powder and Si powder results in the formation of low melting point phases,greatly reducing the hot modulus of rupture.However,the low melting point phases promote sintering,which enhances the density and the cold modulus of rupture,and decreases the volume change during heating.The samples added with Al and Si all have higher cold modulus of rupture than those added with Al powder only.
基金supported by National Natural Science Foundation of China (Grant Nos. 51074012, 51204009)
文摘The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.
基金financially supported by the International Cooperation Project Foundation in Science and Technology of China(No.2008DFR50070)
文摘Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.
基金Shiraz University through grant number 97-GR-ENG-16。
文摘Despite the existence of conventional methods for recycling chips,solid-state techniques have become popular,whereby waste metals are directly recycled into consolidated products with the desired shapes and designs.We investigated the feasibility of recycling phosphor bronze chips through a hot extrusion process using aluminum powder as a metal binder for the fabrication of a metal-fiber-reinforced aluminum matrix composite.To do so,mixtures containing 20 vol%–50 vol%of chips were prepared,cold-compacted,and extruded.The quality of the consolidated samples was evaluated by determining the density of the fabricated composites and studying their microstructures.In addition,we performed tensile and hardness tests to evaluate the mechanical properties of the fabricated composites.We also analyzed the fracture surfaces of the samples to study the fracture mechanism as a function of the volume fraction of phosphor bronze chips in the fabricated composite.The results indicated that the most effective consolidation occurred in the sample containing 20 vol%of chips extruded at 465℃in which the chips serve as ideal fibers for improving the mechanical properties,especially the ultimate tensile strength,in comparison with those of Al matrixes that contain no chips but are produced under the same conditions.
基金the National Natural Science Foundation of China (No.50775085)
文摘Surface composite layer was fabricated on the AZ91D substrate using the lost foam casting (LFC) process. The pre-coating layer reacted with melt substrate and formed the composite layer, and the coating was mainly consist of alloying aluminum powder and low-temperature glass powder (PbO-ZnO-Na20). The vacuum degree, pouring temperature, mold filling process of melt, and pre-coating thickness played an important role during the formation process of composite layer. The results show that surface morphology of composite layer can be divided into three categories: alloying effect of bad and good ceramic layer, alloying effect of good and bad ceramic layer, composite layer of good quality. The main reason for bad alloying layer is that alloying pre-coating thickness is so thin that it is scoured easily and involved in the melt, in addition, it is difficult for melt to infiltrate into the alloying coating owing to the surface tension of coating when the vacuum degree is excessively low. Bad ceramic layer is because of somewhat lower pouring temperature and the thicker alloying coating, due to the absorption of heat from the melt, making low temperature glass powder pre-coating layer fuse inadequate. Thus, to get good quality composite layer, the process conditions must be appropriate, the result shows that the optimum process parameters are as follows: at a pouring temperature of 800 ~C, vacuum degree of -0.06 MPa, alloying pre-coating thickness ofO.4 mm, and low glass powder pre-coating layer thickness ofl mm.
文摘n order to investigate the phase evolution and microstructure of aluminum containing carbon composites,- 195 graphite flake and ≤0. 074 mm aluminum powders( Al 99%,in mass,the same hereinafter) were used as main starting materials. The mixture with 1 ∶ 1of graphite and aluminum was well mixed with additional 15% phenolic resin and then shaped in a hydraulic machine. The specimens were first dried at 250 ℃ for12 h,and then graphite-embedded fired at 800,1 000,1 200,1 400,and 1 600 ℃ for 3 h,respectively. XRD and SEM were used to characterize the phase compositions and section microstructure. The results show that at800 ℃ aluminum powder melts and reacts with carbon in resin forming granular Al4C3 at the edge of graphite;at 1 000 ℃,Al4C3 increases in amount and grows in volume,and AlN commences to form; at 1 200 ℃,some Al4C3 grows to tabular shape,and other Al4C3 nitridizes forming fibrous AlN; at 1 400 ℃,Al4C3 decreases because it is nitridized or oxidized forming fibrous AlN or Al2O3; at 1 600 ℃,Al4C3 disappears,AlN or Al2O3 gets big and coarse.
文摘In order to tackle the shortcomings of high brittleness,hard graphitization,and poor oxidation resistance resulted from carbonization of phenolic resin of Mg O- C refractories, effects of 2 mass% spherical Ni, and2 mass% spherical Ni plus 7. 5 mass% Al composite powder on microstructure of the secondary carbon in Mg O- C refractories matrix were investigated. The results show that a large number of carbon whiskers form after the carbonization of phenolic resin with Ni powder;in the Mg O- C refractories matrix with only Ni powder,the carbon microspheres form at all treatment temperatures and change slightly with the temperature rising;the carbon whiskers begin to generate in the specimens with composite powder at 1 000 ℃,the diameter of the carbon whiskers is about 0. 4- 0. 5 μm,and the length is about 3- 4 μm,and the formed carbon whiskers increase gradually with the temperature rising.