期刊文献+
共找到53,105篇文章
< 1 2 250 >
每页显示 20 50 100
Review on laser directed energy deposited aluminum alloys 被引量:2
1
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
2
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Ultra-large aluminum shape casting:Opportunities and challenges
3
作者 Qi-gui Wang Andy Wang Jason Coryell 《China Foundry》 SCIE EI CAS CSCD 2024年第5期397-408,共12页
Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural comp... Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings. 展开更多
关键词 ultra-large castings aluminum light-weighting quality microstructure materials properties
下载PDF
Synthesis of Organic-Inorganic Hybrid Aluminum Hypophosphite Microspheres Flame Retardant and Its Flame Retardant Research on Thermoplastic Polyurethane
4
作者 刘生鹏 XU Zhi +5 位作者 ZHANG Xinyuan WEI Huan XIONG Yun DING Yigang HUANG Wenbo 许莉莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期221-233,共13页
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of... Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites. 展开更多
关键词 POLYPHOSPHAZENE thermoplastic polyurethane flame retardancy aluminum hypophosphite surface polymerization
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
5
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
6
作者 吴旻 杨永琪 王垚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期476-481,共6页
The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations ar... The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid. 展开更多
关键词 first-principles method molecular dynamics short-range order liquid aluminum
下载PDF
Zinc finger protein ZFP36 and pyruvate dehydrogenase kinase PDK1 function in ABA-mediated aluminum tolerance in rice
7
作者 Nana Su Yanning Gong +6 位作者 Xin Hou Xing Liu Sergey Shabala Vadim Demidchik Min Yu Mingyi Jiang Liping Huang 《The Crop Journal》 SCIE CSCD 2024年第5期1483-1495,共13页
Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in... Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in rice.This study unveils a novel function of ZFP36 modulated by abscisic acid(ABA)-dependent mechanisms,specifically aimed at alleviating Al toxicity in rice.Under Al stress,the expression of ZFP36significantly increased through an ABA-dependent pathway.Knocking down ZFP36 heightened Al sensitivity,while overexpressing ZFP36 conferred increased resistance to Al stress.Additionally,our investigations revealed a physical interaction between ZFP36 and pyruvate dehydrogenase kinase 1 in rice(OsPDK1).Biochemical assays further elucidated that OsPDK1 phosphorylates ZFP36 at the amino acid site 73–161.Subsequent experiments demonstrated that ZFP36 positively regulates the expression of ascorbate peroxidases(OsAPX1)and OsALS1 by binding to specific elements in their upstream segments in rice.Through genetic and phenotypic analyses,we unveiled that OsPDK1 influences ABA-triggered antioxidant defense to alleviate Al toxicity by interacting with ZFP36.In summary,our study underscores that pyruvate dehydrogenase kinase 1(OsPDK1)phosphorylates ZFP36 to modulate the activities of antioxidant enzymes via an ABA-dependent pathway,influencing tolerance of rice to soil Al toxicity. 展开更多
关键词 ZFP36 OsPDK1 ABA signaling aluminum tolerance
下载PDF
Impact of cooling rate on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy
8
作者 JIANG Ke-da LIAO Ze-xin +2 位作者 CHEN Ming-yang LIU Sheng-dan TANG Jian-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2225-2236,共12页
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ... The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling. 展开更多
关键词 7xxx aluminum alloy cooling rate exfoliation corrosion microstructure
下载PDF
AP assembled on ultrafine aluminum particle and its application to NEPE propellant
9
作者 Huixin Wang Qiang Li +3 位作者 Hui Ren Liangjun Xie Tingting Liu Zhihong Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期20-29,共10页
Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spheric... Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants. 展开更多
关键词 aluminum powder COATING NEPE propellant Energy output Applied research
下载PDF
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton
10
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
下载PDF
Reversible aqueous aluminum metal batteries enabled by a water-in-salt electrolyte
11
作者 Wenjing Tang Lijun Deng +3 位作者 Longyuan Guo Shoubin Zhou Qinhai Jiang Jiayan Luo 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1183-1191,共9页
Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid... Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid electrolytes,however,the Al anode and battery case suffer from corrosion.On the other hand,Al is irreversible in aqueous electrolyte with severe hydrogen evolution reaction.Here,we demonstrate a water-in-salt aluminum ion electrolyte(WISE)based on Al and lithium salts to tackle the above challenges.In the WISE system,water molecules can be confined within the Li^(+)solvation structures.This diminished Al^(3+)-H_(2)O interaction essentially eliminates the hydrolysis effect,effectively protecting Al anode from corrosion.Therefore,long-term Al plating/stripping can be realized.Furthermore,two types of high-performance full batteries have been demonstrated using copper hexacyanoferrate(CuHCF,a Prussian Blue Analogues)and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM)as cathodes.The reversibility of Al anode laid the foundation for low cost rechargeable batteries suffering for large-scale energy storage.Broader context:Al batteries are expected to become a safe and sustainable alternative to lithium batteries.For decades,chase for a feasible Al secondary battery has not been successful.The key challenge is to find suitable cathode and electrolyte materials,together with which Al anode battery can function reversibly.Currently,fatal drawbacks have impeded the practical application of Al metal batteries(AMBs),such as sustained corrosion of Al anode and battery case in ionic liquid electrolytes,irreversibility issues as well as severe hydrogen evolution reaction during cycling in aqueous electrolyte.Therefore,electrolyte and their electrochemical kinetics play a vital role in the performance and environmental operating limitations of high-energy Al metal batteries.In this work,we demonstrate a nearly neutral Al ion water-in-salt electrolyte(WISE)to tackle the above challenges.The WISE shows excellent stability in the open atmosphere.The distinct solvation-sheath structure of Al^(3+)in the WISE system would protect Al metal anodes from corrosion and eliminate hydrogen evolution reaction effectively,further promoting the reversibility of Al metal anodes with dendrite-free morphology.Moreover,such a WISE exhibits superior compatibility with LiNi_(0.3)Co_(0.3)Mn_(0.3)O_(2)(NCM)and copper hexacyanoferrate(CuHCF)cathodes and long-term stabilities with high coulombic efficiency(CE)can be attained for full batteries with the WISE.The approach in this study can furnish an opportunity to develop reversible AMBs and lay the foundation for other potential multivalent-metalbased secondary batteries suffering from interface passivation and poor reversibility,which suggest the promise of multivalent metal batteries and their applications in large-scale energy storage. 展开更多
关键词 Water-in-salt electrolyte Rechargeable aluminum anode Solvation sheath Hybrid battery Abundance
下载PDF
Effect of combination of ultraviolet radiation and biocide on fungal-induced corrosion of high-strength 7075 aluminum alloy
12
作者 Zheng-yu JIN Chao WANG +1 位作者 Hai-xian LIU Hong-wei LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2787-2799,共13页
The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surf... The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion. 展开更多
关键词 fungal-induced corrosion Aspergillus terreus 7075 aluminum alloy ultraviolet radiation benzalkonium chloride
下载PDF
Revisiting aluminum current collector in lithium-ion batteries:Corrosion and countermeasures
13
作者 Shanglin Yang Jinyan Zhong +1 位作者 Songmei Li Bin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期610-634,I0014,共26页
With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary m... With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs. 展开更多
关键词 Lithium-ion battery aluminum current collector CORROSION Electrochemical performance ELECTROLYTE Protective layer
下载PDF
Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems
14
作者 Anyin Qi Xiaonan Yan +10 位作者 Yuqing Liu Qingchen Zeng Hang Yuan Huange Huang Chenggang Liang Dabing Xiang Liang Zou Lianxin Peng Gang Zhao Jingwei Huang Yan Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期1-13,共13页
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on... Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis. 展开更多
关键词 Tartary buckwheat aluminum stress SILICON root growth oxidative stress
下载PDF
Preparation and properties of high-energy-density aluminum/boroncontaining gelled fuels
15
作者 Yi Chen Kang Xue +3 位作者 Yang Liu Lun Pan Xiangwen Zhang Ji-Jun Zou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期230-242,共13页
Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this... Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants. 展开更多
关键词 Gelled fuels Energetic aluminum/boron Low-molecular-mass organic gellant Fuel property
下载PDF
Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability
16
作者 Wenjun Zhou Mingzhi Yang +3 位作者 Qian Peng Yong Peng Kui Wang Qiang Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期735-755,共21页
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ... The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications. 展开更多
关键词 aluminum connectors three-point bending simulation parametric design model multi-objective collaborative optimization
下载PDF
Multidisciplinary treatment of molten aluminum combined burn:An unusual case report
17
作者 Shengzhou Shan Yinbo Peng +4 位作者 Liqing Gong Zhigang Mao Weirong Yu Tao Ni Peng Xu 《Chinese Journal of Plastic and Reconstructive Surgery》 2024年第3期135-138,共4页
Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient ha... Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns. 展开更多
关键词 Molten aluminum Combined burn Multidisciplinary treatment
下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
18
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
19
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si C particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Proposal of Equivalent Porosity Indicator for Foam Aluminum Based on GRNN
20
作者 Wenhao Da Lucai Wang +3 位作者 Yanli Wang Xiaohong You Wenzhan Huang Fang Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期16-31,共16页
To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these in... To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these indicators in analyzing foam aluminum's performance is limited.This study employs the Generalized Regression Neural Network(GRNN)method to establish a model that links foam aluminum's microstructure characterization data with its mechanical properties.Through the GRNN model,researchers extracted four of the most crucial features and their corresponding weight values from the 13 pore characteristics of foam aluminum.Subsequently,a new characterization formula,called“Wang equivalent porosity”(WEP),was developed by using residual weights assigned to the feature weights,and four parameter coefficients were obtained.This formula aims to represent the relationship between foam aluminum's microstructural features and its mechanical performance.Furthermore,the researchers conducted model verification using compression data from 11 sets of foam aluminum.The validation results showed that among these 11 foam aluminum datasets,the Gibson-Ashby formula yielded anomalous results in two cases,whereas WEP exhibited exceptional stability without any anomalies.In comparison to the Gibson-Ashby formula,WEP demonstrated an 18.18%improvement in evaluation accuracy. 展开更多
关键词 aluminum foam characterization index importance analysis feature learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部