Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ...With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.展开更多
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare...The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.展开更多
Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistan...Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistance due to the coexistence of different microstructures.The microstructure and mechanical properties of a novel cast multiphase stainless steel,composed of martensite,ferrite,and austenite,were investigated following appropriate heat treatment processes:solution treatment at 1,050℃ for 0.5 h followed by water quenching to room temperature,and aging treatment at 500℃ for 4 h followed by water quenching to room temperature.Results show reversed austenite is formed by diffusion of Ni element during aging process,and the enrichment of Ni atoms directly determines the mechanical stability of austenite.The austenite with a lower Ni content undergoes a martensitic transformation during plastic deformation.The tensile strength of the specimen exceeds 1,100 MPa and the elongation exceeds 24%after solid solution,and further increases to 1,247 MPa and 25%after aging treatment.This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale G-phase pinning dislocations in ferrite and martensite.展开更多
In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-du...In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-ductility synergy.It was shown that the combined twinning-induced plasticity(TWIP)/transformation-induced plasticity(TRIP)effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel.In this regard,by consideration of the observed temperature-dependency of plastic deformation,the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests.Accordingly,the optimum tensile toughness of 846 MJ/m^(3) and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100℃ and the TRIP effect at 25℃ at the later stages of the straining.Consequently,a deformation-temperature-transformation(DTT)diagram was developed for this metastable alloy.Moreover,based on work-hardening analysis,it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite.展开更多
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust...Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.展开更多
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect...Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.展开更多
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati...The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.展开更多
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen...There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.展开更多
Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding proce...Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed.展开更多
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the...Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.展开更多
The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was f...The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods.The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS.Over the rising period of CE,the 304L SS experienced a transition from passivation to depassivation,leading to the massive growth of metastable pitting and stable pitting.The depassivation of304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred.展开更多
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q...The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.展开更多
The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also stud...The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also studied using electron backscatter diffraction.The flow stress decreases with the increasing temperature and decreasing strain rate.A constitutive equation was established to characterize the relationship among the deformation parameters,and the deformation activation energy was calculated to be 497.92 k J/mol.Processing maps were constructed to describe the appropriate processing window,and the optimum processing parameters were determined at a temperature of 1107-1160℃ and a strain rate of 0.005-0.026 s^(-1).Experimental results showed that the main nucleation mechanism is discontinuous dynamic recrystallization(DDRX),followed by continuous dynamic recrystallization(CDRX).In addition,the formation of twin boundaries facilitated the nucleation of dynamic recrystallization.展开更多
The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure...The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture,present in the form of Mg Cl_(2)·6H_(2)O.316H SS occurred severe intergranular corrosion with a corrosion depth of 130μm for1000 h in the impure Na Cl–KCl–Mg Cl_(2) salt.In contrast,the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture,and the corresponding reactions were also discussed.As a result,the corrosiveness of Na Cl–KCl–Mg Cl_(2) salt is reduced significantly.316H SS occurred slight uniform corrosion with a depth of less than 5μm for 3000 h in the purified Na Cl–KCl–Mg Cl_(2) salt.展开更多
Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of ...Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties.展开更多
Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructure...Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer.展开更多
Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of th...Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of the explosive to the flyer plate)and inclination angle were varied and the results were presented.The advent of interlayer relocates the lower boundary of the welding window,and enhances the welding regime by 40%.A triaxial welding window,considering the influence of the third operational parameter,was developed as well.Use of interlayer transforms the continuous molten layer formed in the traditional Al 5052-SS 316 explosive clad interfaces into a smooth interface devoid or with a slender presence of intermetallic compounds.The microhardness,ram tensile and shear strengths of the interlayered clads are higher than those of the traditional explosive clads,and the maximum values are witnessed for stainless steel interlaced Al 5052-SS 316 explosive clads.展开更多
Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ...Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.展开更多
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金Supported by National Natural Science Foundation of China (Grant No.52075378)Prince Sattam Bin Abdulaziz University of Saudi Arabia (Grant No.PSAU/2024/R/1445)。
文摘With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.
基金Saeed Sadeghpour would like to thank Jane,Aatos Erkon säätiö(JAES),and Tiina ja Antti Herlinin säätiö(TAHS)for their financial support on Advanced Steels for Green Planet Project.The authors would also like to greatly thank the members of the“Formability Laboratory”and“Advanced Steels and Thermomechanically Processed Engineering Ma-terials Laboratory”for their help and support。
文摘The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.
基金supported by the Inner Mongolia Autonomous Region Science and Technology Major Special Project(Grant No.2021SZD0082).
文摘Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistance due to the coexistence of different microstructures.The microstructure and mechanical properties of a novel cast multiphase stainless steel,composed of martensite,ferrite,and austenite,were investigated following appropriate heat treatment processes:solution treatment at 1,050℃ for 0.5 h followed by water quenching to room temperature,and aging treatment at 500℃ for 4 h followed by water quenching to room temperature.Results show reversed austenite is formed by diffusion of Ni element during aging process,and the enrichment of Ni atoms directly determines the mechanical stability of austenite.The austenite with a lower Ni content undergoes a martensitic transformation during plastic deformation.The tensile strength of the specimen exceeds 1,100 MPa and the elongation exceeds 24%after solid solution,and further increases to 1,247 MPa and 25%after aging treatment.This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale G-phase pinning dislocations in ferrite and martensite.
文摘In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-ductility synergy.It was shown that the combined twinning-induced plasticity(TWIP)/transformation-induced plasticity(TRIP)effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel.In this regard,by consideration of the observed temperature-dependency of plastic deformation,the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests.Accordingly,the optimum tensile toughness of 846 MJ/m^(3) and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100℃ and the TRIP effect at 25℃ at the later stages of the straining.Consequently,a deformation-temperature-transformation(DTT)diagram was developed for this metastable alloy.Moreover,based on work-hardening analysis,it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite.
文摘Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.
基金financially supported by the National Natural Science Foundation of China(Nos.U2141205,52371002,and 52374366)the Fundamental Research Funds for the Central Universities(Nos.06109125 and 06930007)Fundamental Research Funds for the Central Universities(No.FRF-BD-23-02).
文摘Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.
文摘The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.
文摘There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.
文摘Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed.
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.
文摘Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.
基金financially supported of the National Natural Science Foundation of China (Nos.52101105 and 51975263)。
文摘The corrosion behavior of 304L stainless steel(SS)in 3.5wt%NaCl solution after different cavitation erosion(CE)times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques.It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods.The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS.Over the rising period of CE,the 304L SS experienced a transition from passivation to depassivation,leading to the massive growth of metastable pitting and stable pitting.The depassivation of304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171057, 52034005, 51901225, and 12027813)the Liaoning Province Excellent Youth Foundation, China (No. 2021-YQ-01)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y2021061)
文摘The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
基金financial support of the National Natural Science Foundation of China(Nos.52101105 and 51975263)。
文摘The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also studied using electron backscatter diffraction.The flow stress decreases with the increasing temperature and decreasing strain rate.A constitutive equation was established to characterize the relationship among the deformation parameters,and the deformation activation energy was calculated to be 497.92 k J/mol.Processing maps were constructed to describe the appropriate processing window,and the optimum processing parameters were determined at a temperature of 1107-1160℃ and a strain rate of 0.005-0.026 s^(-1).Experimental results showed that the main nucleation mechanism is discontinuous dynamic recrystallization(DDRX),followed by continuous dynamic recrystallization(CDRX).In addition,the formation of twin boundaries facilitated the nucleation of dynamic recrystallization.
基金supported by the National Science Foundation of Shanghai(No.22ZR1474600)the National Natural Science Foundation of China(No.12175302)+1 种基金the“Thorium Molten Salt Reactor Nuclear Energy System”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 02040000)the“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21000000)。
文摘The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture,present in the form of Mg Cl_(2)·6H_(2)O.316H SS occurred severe intergranular corrosion with a corrosion depth of 130μm for1000 h in the impure Na Cl–KCl–Mg Cl_(2) salt.In contrast,the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture,and the corresponding reactions were also discussed.As a result,the corrosiveness of Na Cl–KCl–Mg Cl_(2) salt is reduced significantly.316H SS occurred slight uniform corrosion with a depth of less than 5μm for 3000 h in the purified Na Cl–KCl–Mg Cl_(2) salt.
基金Acknowledgement The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant No. 50874033).
文摘Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties.
基金Supported by National Natural Science Foundation of China (50874033).
文摘Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer.
文摘Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of the explosive to the flyer plate)and inclination angle were varied and the results were presented.The advent of interlayer relocates the lower boundary of the welding window,and enhances the welding regime by 40%.A triaxial welding window,considering the influence of the third operational parameter,was developed as well.Use of interlayer transforms the continuous molten layer formed in the traditional Al 5052-SS 316 explosive clad interfaces into a smooth interface devoid or with a slender presence of intermetallic compounds.The microhardness,ram tensile and shear strengths of the interlayered clads are higher than those of the traditional explosive clads,and the maximum values are witnessed for stainless steel interlaced Al 5052-SS 316 explosive clads.
文摘Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.