A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron ...A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.展开更多
In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were ob...In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical s...In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.展开更多
Suitable microstructures required for semisolid casting were formed by using a vertical pipe.Different lengths of vertical pipe,slug dimensions and pouring time were used to investigate their influence on the microstr...Suitable microstructures required for semisolid casting were formed by using a vertical pipe.Different lengths of vertical pipe,slug dimensions and pouring time were used to investigate their influence on the microstructure of A356 alloy.The results indicate that at the same length of the vertical pipe,the morphology of the primary α(Al)gradually deteriorates by the enlargement in the slug size,but the deteriorating speed slows down with increasing pipe length.They also reveal that the increase in the pipe length improves the microstructure,whereas no further improvement appears when the pipe length reaches a certain value.The optimum length of the pipe obtained in the present work is 430 mm.The microstructure of larger slug poured at higher pouring temperature gets worse and it can be improved by moderately elongating pouring time.The relative mechanisms were also discussed.展开更多
The copper-based shape memory alloy pipe joint was applied in the field of oil pipelines jointing as well as installing. It has many advantages than anything. In the paper, the basic principle and connection influence...The copper-based shape memory alloy pipe joint was applied in the field of oil pipelines jointing as well as installing. It has many advantages than anything. In the paper, the basic principle and connection influence factors of copper-based shape memory alloy pipe joint were described. Experimental results shows the copper-based shape memory alloy pipe joints can be used in oilfield oil pipeline connection and it can solve the inner pipe joint corrosion damage problem by welding.展开更多
A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules...A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules of the key extrusion parameters on the average grain size and grain uniformity of the extruded pipe were revealed.The results show that with the increase of initial billet temperature,extrusion speed and friction coefficient,the grain uniformity is firstly improved and then deteriorated.Larger extrusion ratio leads to more uniform grain distribution.With the increase of initial billet temperature,the average grain size of the pipe first decreases and then increases.Additionally,larger extrusion ratio can bring smaller average grain size.The extrusion speed and friction coefficient have slight effects on the average grain size of the extruded pipe.展开更多
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testin...The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations.展开更多
It is found that the anomalous eutectics can be separated on macroscopic scale by flow caused by electromagnetic stirring, and the separated phase is the leading faceted phase with the solution entropy over 23 J/(mol&...It is found that the anomalous eutectics can be separated on macroscopic scale by flow caused by electromagnetic stirring, and the separated phase is the leading faceted phase with the solution entropy over 23 J/(mol·K). By using this technology, a new kind of composite pipe and gear with good abrasive properties were made without adding any reinforced particles. Emphases were paid on the researches about formation mechanism of separated eutectic and abrasive property of the composite pipe or gear. The result shows that the entropy of solution controlling the eutectic microstructure is also valid and useful as a criterion of separated eutectic, and the kind and its chemical scope of the off-eutectic used to make composite can be calculated according to this theory.展开更多
A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA...A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA-lined pipe has been researched and developed. Itsoperational principal and technical characteristic is also introduced. The stress and strain in theliner and outer pipe during the hydroforming process have been analyzed and the mechanism ofhydraulic expansion method is studied theoretically. The final forming pressure formula is suggestedand the theoretical analysis is verified by experimental investigation. The results indicate thatthe new technology is feasible and can be applied in industrial production.展开更多
In recently years, environmental problems, such as global warming and exhaustion of fossil fuels, have grown into serious problems. In the automakers, the development of the fuel cell vehicles using hydrogen as clean ...In recently years, environmental problems, such as global warming and exhaustion of fossil fuels, have grown into serious problems. In the automakers, the development of the fuel cell vehicles using hydrogen as clean energy has been paid attention to. Aluminum alloys have already been applied to a liner material of a high-pressure hydrogen tank for fuel cell vehicles. However, the behavior of hydrogen in aluminum alloys has not been clearly elucidated yet. Therefore, it is necessary to analyze the hydrogen behavior in aluminum alloys. Hydrogen microprint technique (HMPT) has been known as an effective measure to investigate the hydrogen behavior. In the present study, the emission behavior of internal hydrogen on a tensile-deformed Al-9%Mg alloy was investigated bv HMPT at room temoerature. As a result, the hydrogen was emitted at some grain boundaries.展开更多
Duralumin alloys have been utilized as structural components and parts for aircrafts, train-cars and so forth. Their high specific strength was attractive to those applications; however, their little corrosion resista...Duralumin alloys have been utilized as structural components and parts for aircrafts, train-cars and so forth. Their high specific strength was attractive to those applications; however, their little corrosion resistance and low wear endurance became a fatal demerit in practical applications. In order to overcome these issues of high strength aluminum alloys, high density plasma nitriding is proposed as an effective surface treatment for duralumin. This process has a capability to control the RF- and DC-plasmas independently for nitriding. This enables us to temporally control and describe the plasma state by in-situ plasma diagnosis. This plasma diagnosis was instrumented to search for optimum processing condition to plasma nitriding the duralumin alloys of type A2011. Both type A2011 aluminum alloy plates and pipes were employed to describe the inner nitriding behavior for hardening the duralumin alloys by the present plasma nitriding.展开更多
文摘A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.
文摘In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
基金Funded by the National Natural Science Foundation of China(Nos.50525516, 50875062)
文摘In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.
基金Project(2006AA03Z115)supported by the National Hi-tech Research and Development Program of ChinaProject(2006CB605203)supported by the National Basic Research Program of ChinaProject(50374012)supported by the National Natural Science Foundation of China
文摘Suitable microstructures required for semisolid casting were formed by using a vertical pipe.Different lengths of vertical pipe,slug dimensions and pouring time were used to investigate their influence on the microstructure of A356 alloy.The results indicate that at the same length of the vertical pipe,the morphology of the primary α(Al)gradually deteriorates by the enlargement in the slug size,but the deteriorating speed slows down with increasing pipe length.They also reveal that the increase in the pipe length improves the microstructure,whereas no further improvement appears when the pipe length reaches a certain value.The optimum length of the pipe obtained in the present work is 430 mm.The microstructure of larger slug poured at higher pouring temperature gets worse and it can be improved by moderately elongating pouring time.The relative mechanisms were also discussed.
文摘The copper-based shape memory alloy pipe joint was applied in the field of oil pipelines jointing as well as installing. It has many advantages than anything. In the paper, the basic principle and connection influence factors of copper-based shape memory alloy pipe joint were described. Experimental results shows the copper-based shape memory alloy pipe joints can be used in oilfield oil pipeline connection and it can solve the inner pipe joint corrosion damage problem by welding.
基金Project(2009ZX04005-031-11)supported by the Major National Science and Technology Special Project of ChinaProject(KP200911)supported by the Research Fund of State Key Laboratory of Solidification Processing of ChinaProject(B08040)supported by the"111"Project of China
文摘A thermal-mechanical and micro-macro coupled finite element(FE) model for the hot extrusion process of large-scale thick-walled Inconel 625 pipe was developed based on the DEFORM-2D platform.Then,the influence rules of the key extrusion parameters on the average grain size and grain uniformity of the extruded pipe were revealed.The results show that with the increase of initial billet temperature,extrusion speed and friction coefficient,the grain uniformity is firstly improved and then deteriorated.Larger extrusion ratio leads to more uniform grain distribution.With the increase of initial billet temperature,the average grain size of the pipe first decreases and then increases.Additionally,larger extrusion ratio can bring smaller average grain size.The extrusion speed and friction coefficient have slight effects on the average grain size of the extruded pipe.
基金financially supported by the National Natural Science Foundation of China(No.51301017)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-13-034A)
文摘The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations.
文摘It is found that the anomalous eutectics can be separated on macroscopic scale by flow caused by electromagnetic stirring, and the separated phase is the leading faceted phase with the solution entropy over 23 J/(mol·K). By using this technology, a new kind of composite pipe and gear with good abrasive properties were made without adding any reinforced particles. Emphases were paid on the researches about formation mechanism of separated eutectic and abrasive property of the composite pipe or gear. The result shows that the entropy of solution controlling the eutectic microstructure is also valid and useful as a criterion of separated eutectic, and the kind and its chemical scope of the off-eutectic used to make composite can be calculated according to this theory.
基金This project is supported by National Science and Technology Foundation of China (No.96-918-02-03).
文摘A new hydroforming process for manufacturing corrosion-resistant-alloy(CRA)-lined pipe is proposed to overcome the disadvantages in existing technologies, and a new kindof hydraulic expansion device for bimetallic CRA-lined pipe has been researched and developed. Itsoperational principal and technical characteristic is also introduced. The stress and strain in theliner and outer pipe during the hydroforming process have been analyzed and the mechanism ofhydraulic expansion method is studied theoretically. The final forming pressure formula is suggestedand the theoretical analysis is verified by experimental investigation. The results indicate thatthe new technology is feasible and can be applied in industrial production.
文摘In recently years, environmental problems, such as global warming and exhaustion of fossil fuels, have grown into serious problems. In the automakers, the development of the fuel cell vehicles using hydrogen as clean energy has been paid attention to. Aluminum alloys have already been applied to a liner material of a high-pressure hydrogen tank for fuel cell vehicles. However, the behavior of hydrogen in aluminum alloys has not been clearly elucidated yet. Therefore, it is necessary to analyze the hydrogen behavior in aluminum alloys. Hydrogen microprint technique (HMPT) has been known as an effective measure to investigate the hydrogen behavior. In the present study, the emission behavior of internal hydrogen on a tensile-deformed Al-9%Mg alloy was investigated bv HMPT at room temoerature. As a result, the hydrogen was emitted at some grain boundaries.
文摘Duralumin alloys have been utilized as structural components and parts for aircrafts, train-cars and so forth. Their high specific strength was attractive to those applications; however, their little corrosion resistance and low wear endurance became a fatal demerit in practical applications. In order to overcome these issues of high strength aluminum alloys, high density plasma nitriding is proposed as an effective surface treatment for duralumin. This process has a capability to control the RF- and DC-plasmas independently for nitriding. This enables us to temporally control and describe the plasma state by in-situ plasma diagnosis. This plasma diagnosis was instrumented to search for optimum processing condition to plasma nitriding the duralumin alloys of type A2011. Both type A2011 aluminum alloy plates and pipes were employed to describe the inner nitriding behavior for hardening the duralumin alloys by the present plasma nitriding.