Introduction: Iliac particulate cancellous bone and marrow (PCBM) is commonly used as a high-quality reconstruction material;however, PCBM cannot be extracted in sufficient amounts to meet demand. To determine the app...Introduction: Iliac particulate cancellous bone and marrow (PCBM) is commonly used as a high-quality reconstruction material;however, PCBM cannot be extracted in sufficient amounts to meet demand. To determine the appropriate amount of iliac PCBM to be collected, we used digital technology to measure the volume required for jaw reconstruction before surgery. Clinical Case: The patient, a 23-year-old man, underwent surgery for a calcifying odontogenic cyst. A maxillary cyst occupied the left anterior-premolar region (tooth 21 - 25) and the deciduous canine remained;a permanent canine was included in the cyst. We planned to preserve the teeth except for the impacted canine, completely excise the maxillary cyst, and preserve the alveolar ridge morphology. Preoperative digital imaging was used to determine the amount of alveolar ridge reconstruction required and accordingly determine the amount of iliac cancellous bone to be harvested. We used a titanium mesh tray and grafts of iliac particulate cancellous bone and marrow to reconstruct the alveolar ridge. The amount of iliac cancellous bone that needed to be collected was clarified and the supply amount could be collected in just the right amount;thus, the cortical bone of the iliac inner plate could be preserved. The alveolar bone morphology was reconstructed to allow the placement of dental implants as per the preoperative digital surgery. Three years after the operation, no sign of recurrence has been observed. Conclusion: Minimally invasive surgery was performed by clarifying the amount of iliac cancellous bone graft that needs to be harvested, which improved the accuracy of surgery.展开更多
Background: The vast percentage of the alveolar bone resorption process happens within the first 12 to 24 weeks post extraction;however, this phenomenon is chronic, and the alveolar ridge continues to resorb. In order...Background: The vast percentage of the alveolar bone resorption process happens within the first 12 to 24 weeks post extraction;however, this phenomenon is chronic, and the alveolar ridge continues to resorb. In order to prevent this reduction or at least recompense the loss of bone dimensions, the alveolar ridge preservation (ARP) technique was developed. Objectives: This research studied the vertical and horizontal bone dimensional changes as a result of non-molar teeth extraction alone against extraction with alveolar ridge preservation utilizing composite (bioceramics/collagen) graft by cone-beam computed tomography radiographies analyses. Material and Methods: This research was a randomized split-mouth controlled trial. 12 patients need extraction of the maxillary non-molar teeth were enrolled and allocated into 2 groups. 12 sockets after atraumatic extraction were filled with a composite graft in the role of the test group, 12 sockets left to unassisted healing after atraumatic extraction without any graft materials in the role of the control group. Two CBCT radiographs were taken at baseline and at 4 months after extraction for comparison. Both vertical and horizontal resorptions of the alveolar ridge were analyzed between test and control group by CBCT radiographs. Results: 4 months after extraction, there was a mean of vertical alveolar bone resorption compared with the baseline (0.56 ± 0.15 mm) in the test group and (1.47 ± 0.30 mm) in the control group. Whereas it was a mean of horizontal alveolar bone resorption compared with the baseline (0.90 ± 0.16 mm) in the test group and (2.26 ± 0.30 mm) in the control group. Therefore, there was a significant difference between the two groups. Conclusions: Within the limitations of this research, we demonstrated that the osteogen-plug technique significantly decreased the reduction of the bone dimensional in comparison to the tooth extraction alone, and showed that the dimensional change of the alveolar ridge after tooth extraction was minimized by using an osteogen-plug.展开更多
Cone-beam computerized tomography(CBCT)is an effective technique for assessment of changes to the alveolar ridge(AR).However,its accuracy and reliability could be improved by standardization of imaging positions to re...Cone-beam computerized tomography(CBCT)is an effective technique for assessment of changes to the alveolar ridge(AR).However,its accuracy and reliability could be improved by standardization of imaging positions to remain unchanged during measurements.In this study,an alveolar ridge preservation procedure was performed on a left third molar(38)socket by filling it with a radiotransparent synthetic bone graft,mineralized collagen(MC).Photographic,X-ray and CBCT images were captured before and 3,6 and 12 months after surgery.A new method was developed to standardize CBCT for quantitative evaluation.Obtained CBCT images showed good comparability.The post-extraction alveolar width and height were both over 95%of the original values,but some resorption of the lingual bone wall(>50%)and inter-crestal bone(>30%).It is concluded that an effective positional standardization method was developed for CBCT assessment of AR dimensional changes in the posterior mandible.The use of MC in combination with a collagen membrane improved dimensional preservation of the AR.展开更多
BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmen...BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmentation(LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells(UA-ADRCs), fraction 2 of plasma rich in growth factors(PRGF-2) and an osteoinductive scaffold(OIS)(UAADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone(PRGF-2/OIS) in GBR-MSA/LRA.CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBRMSA/LRA. At the latter time point implants were placed. Radiographs(32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic,histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS.CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.展开更多
Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental pra...Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental practice.With degradability and a high degree of osteogenesis,Mg alloy is a successful biodegrad-able material for orthopedic applications,and its application in dentistry has made certain progress.How-ever,considering the unique subgingival healing properties of oral implants,there is still a gap between the desired material properties for clinical applications and available materials.Indeed,studies on the use of Mg-based fixation screws for dentistry applications are still rare.In this study,we reported a magnesium alloy with low combined addition of strontium and lanthanum.The mechanical properties,degradation behavior,osteogenesis,and gingival compatibility were systematically investigated for assess-ing its potential application in alveolar bone fixation screws.With the alloying element content restricted to 0.3 wt.%,Mg-Sr-La alloy still exhibited good mechanical properties,with yield tensile and compressive strength twice higher than those of pure Mg.The in vitro degradation rate of this alloy was 0.10 mm y-1,which was slightly slower than high-purity Mg.The indirect and direct cell assay confirmed the elevated osteoblastic differentiation of MC3T3-E1 and migration of HGF-1 cells.Moreover,Mg-Sr-La alloy demon-strated a relatively slow degradation in the maxillary bone of Beagles.A remarkable promotion of the bone-implant contacts and significantly decreased fibrous encapsulation was observed in the subgingival environment,implying superior osseointegration of the experimental alloy than the titanium control.The empirical findings here reveal the great potential of Mg-Sr-La alloy for the application in alveolar bone fixation devices.展开更多
Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties.The present study covalently bo...Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties.The present study covalently bonded polyphosphate onto a collagen scaffold(P-CS)by crosslinking.The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model.This improvement is attributed to the increase in hydrophilicity,increased thrombin generation,platelet activation and stimulation of the intrinsic coagulation pathway.In addition,the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model.The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells.Osteogenesis was improved by both polyphosphate and blood clots.Taken together,P-CS possesses favorable hemostasis and alveolar ridge preservation capability.It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss.Statement of significance:Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction.However,its application is hampered by insufficient hemostatic and osteoinductive property.Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential.展开更多
To study the effect of two composition ratios of nano-hydroxyapatite and collagen(NHAC)composites on repairing alveolar bone defect of dogs.Eighteen healthy adult dogs were randomly divided into three groups.Two kinds...To study the effect of two composition ratios of nano-hydroxyapatite and collagen(NHAC)composites on repairing alveolar bone defect of dogs.Eighteen healthy adult dogs were randomly divided into three groups.Two kinds of the NHAC composites were prepared according to the constituent ratios of 3:7 and 5:5;immediately after extraction of the mandibular second premolars,each kind of the NHAC composite was implanted into extraction socket,respectively:Group I,nHA/Col紏3:7;Group II,nHA/Col紏5:5 and Group III,blank control group.The bone-repairing ability of the two grafts was separately analyzed by morphometric measurement,X-ray tomography examination and biomechanical analysis at 1st,3rd and 6th month post-surgical,respectively.The NHAC composites were absorbed gradually after implanting into alveolar bone defect and were replaced by new bone.The ratios of new bone formation of Group I was significantly higher than that of Group II after 3 months(P<0.05).The structure and bioactive performance can be improved when the ratio between the collagen and the hydroxyapatite was reasonable,and the repairing ability and effect in extraction sockets are obviously better.展开更多
The purpose of this study was to demonstrate the feasibility of applying cone-beam computed tomography(CBCT) to observe dimensional changes in human alveolar bone continuously after tooth extraction.Sixty patients w...The purpose of this study was to demonstrate the feasibility of applying cone-beam computed tomography(CBCT) to observe dimensional changes in human alveolar bone continuously after tooth extraction.Sixty patients were selected from a CBCT database.Each patient had two CBCT scans(CBCT I and CBCT II),one taken before and one taken after implant surgery.A fixed anatomic reference point was used to orient the horizontal slice of the two scans.The alveolar ridge width was measured on the horizontal slice.In each series of CBCT I sagittal slices,the number of slices from the start point to the pulp center of the test tooth was recorded.The tooth length was measured on the sagittal slice.In each series of CBCT II slices,tooth length was measured on a sagittal slice selected based on the number of slices from the start point to the pulp center recorded in CBCT I.Intraobserver reliability,assessed by the intraclass correlation coefficient(ICC),was high.Paired sample t-tests of repeated measurements of both tooth length and alveolar bone width showed no statistically significant differences(P0.05).This study has proved that projection differences among CBCT scans taken at different time points from one patient can be neglected without affecting the accuracy of millimeter scale measurements.CBCT is a reliable imaging tool for continuously observing dimensional changes in human alveolar bone.展开更多
Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants.To overcome this limitation,we developed a novel dental implant design:sub-...Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants.To overcome this limitation,we developed a novel dental implant design:sub-scaffold dental implant system(SDIS),which is composed of a metal implant and a micro-nano bioactive glass scaffold.This implant system can be directly implanted under mucous membranes without adding any biomolecules or destroying the alveolar ridge.To evaluate the performance of the novel implant system in vivo,SDISs were implanted into the subepicranial aponeurosis space of Sprague–Dawley rats.After 6 weeks,the SDIS and surrounding tissues were collected and analysed by micro-CT,scanning electron microscopy and histology.Our results showed that SDISs implanted into the sub-epicranial aponeurosis had integrated with the skull without any mobility and could stably support a denture.Moreover,this design achieved alveolar ridge augmentation,as active osteogenesis could be observed outside the cortical bone.Considering that the microenvironment of the sub-epicranial aponeurosis space is similar to that of the alveolar ridge,SDISs have great potential for clinical applications in the treatment of atrophic alveolar ridges.The study was approved by the Animal Care Committee of Guangdong Pharmaceutical University(approval No.2017370).展开更多
文摘Introduction: Iliac particulate cancellous bone and marrow (PCBM) is commonly used as a high-quality reconstruction material;however, PCBM cannot be extracted in sufficient amounts to meet demand. To determine the appropriate amount of iliac PCBM to be collected, we used digital technology to measure the volume required for jaw reconstruction before surgery. Clinical Case: The patient, a 23-year-old man, underwent surgery for a calcifying odontogenic cyst. A maxillary cyst occupied the left anterior-premolar region (tooth 21 - 25) and the deciduous canine remained;a permanent canine was included in the cyst. We planned to preserve the teeth except for the impacted canine, completely excise the maxillary cyst, and preserve the alveolar ridge morphology. Preoperative digital imaging was used to determine the amount of alveolar ridge reconstruction required and accordingly determine the amount of iliac cancellous bone to be harvested. We used a titanium mesh tray and grafts of iliac particulate cancellous bone and marrow to reconstruct the alveolar ridge. The amount of iliac cancellous bone that needed to be collected was clarified and the supply amount could be collected in just the right amount;thus, the cortical bone of the iliac inner plate could be preserved. The alveolar bone morphology was reconstructed to allow the placement of dental implants as per the preoperative digital surgery. Three years after the operation, no sign of recurrence has been observed. Conclusion: Minimally invasive surgery was performed by clarifying the amount of iliac cancellous bone graft that needs to be harvested, which improved the accuracy of surgery.
文摘Background: The vast percentage of the alveolar bone resorption process happens within the first 12 to 24 weeks post extraction;however, this phenomenon is chronic, and the alveolar ridge continues to resorb. In order to prevent this reduction or at least recompense the loss of bone dimensions, the alveolar ridge preservation (ARP) technique was developed. Objectives: This research studied the vertical and horizontal bone dimensional changes as a result of non-molar teeth extraction alone against extraction with alveolar ridge preservation utilizing composite (bioceramics/collagen) graft by cone-beam computed tomography radiographies analyses. Material and Methods: This research was a randomized split-mouth controlled trial. 12 patients need extraction of the maxillary non-molar teeth were enrolled and allocated into 2 groups. 12 sockets after atraumatic extraction were filled with a composite graft in the role of the test group, 12 sockets left to unassisted healing after atraumatic extraction without any graft materials in the role of the control group. Two CBCT radiographs were taken at baseline and at 4 months after extraction for comparison. Both vertical and horizontal resorptions of the alveolar ridge were analyzed between test and control group by CBCT radiographs. Results: 4 months after extraction, there was a mean of vertical alveolar bone resorption compared with the baseline (0.56 ± 0.15 mm) in the test group and (1.47 ± 0.30 mm) in the control group. Whereas it was a mean of horizontal alveolar bone resorption compared with the baseline (0.90 ± 0.16 mm) in the test group and (2.26 ± 0.30 mm) in the control group. Therefore, there was a significant difference between the two groups. Conclusions: Within the limitations of this research, we demonstrated that the osteogen-plug technique significantly decreased the reduction of the bone dimensional in comparison to the tooth extraction alone, and showed that the dimensional change of the alveolar ridge after tooth extraction was minimized by using an osteogen-plug.
基金This work was supported by grants from the Outstanding Medical Academic Leader Program and Creative Team of Jiangsu Province,the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,2014-37)the National Natural Science Foundation of China(No.81400486)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140911)the Postdoctoral Science Foundation of Jiangsu Province(No.1402044B)the China Postdoctoral Science Foundation(No.2015M571647).
文摘Cone-beam computerized tomography(CBCT)is an effective technique for assessment of changes to the alveolar ridge(AR).However,its accuracy and reliability could be improved by standardization of imaging positions to remain unchanged during measurements.In this study,an alveolar ridge preservation procedure was performed on a left third molar(38)socket by filling it with a radiotransparent synthetic bone graft,mineralized collagen(MC).Photographic,X-ray and CBCT images were captured before and 3,6 and 12 months after surgery.A new method was developed to standardize CBCT for quantitative evaluation.Obtained CBCT images showed good comparability.The post-extraction alveolar width and height were both over 95%of the original values,but some resorption of the lingual bone wall(>50%)and inter-crestal bone(>30%).It is concluded that an effective positional standardization method was developed for CBCT assessment of AR dimensional changes in the posterior mandible.The use of MC in combination with a collagen membrane improved dimensional preservation of the AR.
文摘BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmentation(LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells(UA-ADRCs), fraction 2 of plasma rich in growth factors(PRGF-2) and an osteoinductive scaffold(OIS)(UAADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone(PRGF-2/OIS) in GBR-MSA/LRA.CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBRMSA/LRA. At the latter time point implants were placed. Radiographs(32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic,histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS.CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.
基金supported by the National Key R&D,Program of China (No.2018YFC1106600)the National Natural Science Foundation of China (Nos.52071008 and U20A20390)Beijing Natural Science Foundation (No.2192027).
文摘Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental practice.With degradability and a high degree of osteogenesis,Mg alloy is a successful biodegrad-able material for orthopedic applications,and its application in dentistry has made certain progress.How-ever,considering the unique subgingival healing properties of oral implants,there is still a gap between the desired material properties for clinical applications and available materials.Indeed,studies on the use of Mg-based fixation screws for dentistry applications are still rare.In this study,we reported a magnesium alloy with low combined addition of strontium and lanthanum.The mechanical properties,degradation behavior,osteogenesis,and gingival compatibility were systematically investigated for assess-ing its potential application in alveolar bone fixation screws.With the alloying element content restricted to 0.3 wt.%,Mg-Sr-La alloy still exhibited good mechanical properties,with yield tensile and compressive strength twice higher than those of pure Mg.The in vitro degradation rate of this alloy was 0.10 mm y-1,which was slightly slower than high-purity Mg.The indirect and direct cell assay confirmed the elevated osteoblastic differentiation of MC3T3-E1 and migration of HGF-1 cells.Moreover,Mg-Sr-La alloy demon-strated a relatively slow degradation in the maxillary bone of Beagles.A remarkable promotion of the bone-implant contacts and significantly decreased fibrous encapsulation was observed in the subgingival environment,implying superior osseointegration of the experimental alloy than the titanium control.The empirical findings here reveal the great potential of Mg-Sr-La alloy for the application in alveolar bone fixation devices.
基金supported by grants 81870805,81870787 and 81720108011 from National Nature Science Foundation of Chinagrant 2020TD-033 from the Shaanxi Key Scientific and Technological Innovation Team+1 种基金grant 2021JC-34 from Distinguished Young Scientists Funds of Shannxi Provinceby the Youth Innovation Team of Shaanxi Universities.
文摘Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties.The present study covalently bonded polyphosphate onto a collagen scaffold(P-CS)by crosslinking.The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model.This improvement is attributed to the increase in hydrophilicity,increased thrombin generation,platelet activation and stimulation of the intrinsic coagulation pathway.In addition,the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model.The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells.Osteogenesis was improved by both polyphosphate and blood clots.Taken together,P-CS possesses favorable hemostasis and alveolar ridge preservation capability.It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss.Statement of significance:Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction.However,its application is hampered by insufficient hemostatic and osteoinductive property.Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential.
基金supported by the National Natural Science Foundation of China(grant no.21371106)and the Science&Technology Project of Liaoning Province(grant no.2015020689).
文摘To study the effect of two composition ratios of nano-hydroxyapatite and collagen(NHAC)composites on repairing alveolar bone defect of dogs.Eighteen healthy adult dogs were randomly divided into three groups.Two kinds of the NHAC composites were prepared according to the constituent ratios of 3:7 and 5:5;immediately after extraction of the mandibular second premolars,each kind of the NHAC composite was implanted into extraction socket,respectively:Group I,nHA/Col紏3:7;Group II,nHA/Col紏5:5 and Group III,blank control group.The bone-repairing ability of the two grafts was separately analyzed by morphometric measurement,X-ray tomography examination and biomechanical analysis at 1st,3rd and 6th month post-surgical,respectively.The NHAC composites were absorbed gradually after implanting into alveolar bone defect and were replaced by new bone.The ratios of new bone formation of Group I was significantly higher than that of Group II after 3 months(P<0.05).The structure and bioactive performance can be improved when the ratio between the collagen and the hydroxyapatite was reasonable,and the repairing ability and effect in extraction sockets are obviously better.
基金supported by the National Natural Science Foundation of China(No.81371115)
文摘The purpose of this study was to demonstrate the feasibility of applying cone-beam computed tomography(CBCT) to observe dimensional changes in human alveolar bone continuously after tooth extraction.Sixty patients were selected from a CBCT database.Each patient had two CBCT scans(CBCT I and CBCT II),one taken before and one taken after implant surgery.A fixed anatomic reference point was used to orient the horizontal slice of the two scans.The alveolar ridge width was measured on the horizontal slice.In each series of CBCT I sagittal slices,the number of slices from the start point to the pulp center of the test tooth was recorded.The tooth length was measured on the sagittal slice.In each series of CBCT II slices,tooth length was measured on a sagittal slice selected based on the number of slices from the start point to the pulp center recorded in CBCT I.Intraobserver reliability,assessed by the intraclass correlation coefficient(ICC),was high.Paired sample t-tests of repeated measurements of both tooth length and alveolar bone width showed no statistically significant differences(P0.05).This study has proved that projection differences among CBCT scans taken at different time points from one patient can be neglected without affecting the accuracy of millimeter scale measurements.CBCT is a reliable imaging tool for continuously observing dimensional changes in human alveolar bone.
基金This study was financially supported by the National Key Research and Development Program of China(No.2018YFC1106300)the China Postdoctoral Science Foundation(No.2020M672732)+2 种基金the Natural Science Foundation of Guangdong Province of China(No.2019A1515110480)the Medical Scientific Research Foundation of Guangdong Province of China(No.A2020107)the Beijing Municipal Health Commission of China(Nos.BMHC-2019-9,BMHC-2018-4,PXM2020_026275_000002).
文摘Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants.To overcome this limitation,we developed a novel dental implant design:sub-scaffold dental implant system(SDIS),which is composed of a metal implant and a micro-nano bioactive glass scaffold.This implant system can be directly implanted under mucous membranes without adding any biomolecules or destroying the alveolar ridge.To evaluate the performance of the novel implant system in vivo,SDISs were implanted into the subepicranial aponeurosis space of Sprague–Dawley rats.After 6 weeks,the SDIS and surrounding tissues were collected and analysed by micro-CT,scanning electron microscopy and histology.Our results showed that SDISs implanted into the sub-epicranial aponeurosis had integrated with the skull without any mobility and could stably support a denture.Moreover,this design achieved alveolar ridge augmentation,as active osteogenesis could be observed outside the cortical bone.Considering that the microenvironment of the sub-epicranial aponeurosis space is similar to that of the alveolar ridge,SDISs have great potential for clinical applications in the treatment of atrophic alveolar ridges.The study was approved by the Animal Care Committee of Guangdong Pharmaceutical University(approval No.2017370).