期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors:A first-in-human case report and literature review 被引量:4
1
作者 ?nder Solakoglu Werner G?tz +3 位作者 Maren C Kiessling Christopher Alt Christoph Schmitz Eckhard U Alt 《World Journal of Stem Cells》 SCIE CAS 2019年第2期124-146,共23页
BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmen... BACKGROUND Novel strategies are needed for improving guided bone regeneration(GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation(GBR-MSA) and in lateral alveolar ridge augmentation(LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells(UA-ADRCs), fraction 2 of plasma rich in growth factors(PRGF-2) and an osteoinductive scaffold(OIS)(UAADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone(PRGF-2/OIS) in GBR-MSA/LRA.CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBRMSA/LRA. At the latter time point implants were placed. Radiographs(32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic,histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS.CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects. 展开更多
关键词 Case report Cell-based therapy Guided bone regeneration Maxillary sinus augmentation Lateral alveolar ridge augmentation Unmodified autologous adipose-derived regenerative cells Stem cells
下载PDF
In vitro and in vivo evaluation of micro-alloyed magnesium for potential application in alveolar bone fixation screws
2
作者 Hongyan Tang Qing Li +3 位作者 Min Li Xuenan Gu Chengkung Cheng Yubo Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期62-69,共8页
Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental pra... Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental practice.With degradability and a high degree of osteogenesis,Mg alloy is a successful biodegrad-able material for orthopedic applications,and its application in dentistry has made certain progress.How-ever,considering the unique subgingival healing properties of oral implants,there is still a gap between the desired material properties for clinical applications and available materials.Indeed,studies on the use of Mg-based fixation screws for dentistry applications are still rare.In this study,we reported a magnesium alloy with low combined addition of strontium and lanthanum.The mechanical properties,degradation behavior,osteogenesis,and gingival compatibility were systematically investigated for assess-ing its potential application in alveolar bone fixation screws.With the alloying element content restricted to 0.3 wt.%,Mg-Sr-La alloy still exhibited good mechanical properties,with yield tensile and compressive strength twice higher than those of pure Mg.The in vitro degradation rate of this alloy was 0.10 mm y-1,which was slightly slower than high-purity Mg.The indirect and direct cell assay confirmed the elevated osteoblastic differentiation of MC3T3-E1 and migration of HGF-1 cells.Moreover,Mg-Sr-La alloy demon-strated a relatively slow degradation in the maxillary bone of Beagles.A remarkable promotion of the bone-implant contacts and significantly decreased fibrous encapsulation was observed in the subgingival environment,implying superior osseointegration of the experimental alloy than the titanium control.The empirical findings here reveal the great potential of Mg-Sr-La alloy for the application in alveolar bone fixation devices. 展开更多
关键词 Magnesium alloys alveolar ridge augmentation Fixation screws OSSEOINTEGRATION
原文传递
Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass 被引量:2
3
作者 Fujian Zhao Zhen Yang +3 位作者 Lu Liu Dafu Chen Longquan Shao Xiaofeng Chen 《Biomaterials Translational》 2020年第1期82-88,共7页
Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants.To overcome this limitation,we developed a novel dental implant design:sub-... Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants.To overcome this limitation,we developed a novel dental implant design:sub-scaffold dental implant system(SDIS),which is composed of a metal implant and a micro-nano bioactive glass scaffold.This implant system can be directly implanted under mucous membranes without adding any biomolecules or destroying the alveolar ridge.To evaluate the performance of the novel implant system in vivo,SDISs were implanted into the subepicranial aponeurosis space of Sprague–Dawley rats.After 6 weeks,the SDIS and surrounding tissues were collected and analysed by micro-CT,scanning electron microscopy and histology.Our results showed that SDISs implanted into the sub-epicranial aponeurosis had integrated with the skull without any mobility and could stably support a denture.Moreover,this design achieved alveolar ridge augmentation,as active osteogenesis could be observed outside the cortical bone.Considering that the microenvironment of the sub-epicranial aponeurosis space is similar to that of the alveolar ridge,SDISs have great potential for clinical applications in the treatment of atrophic alveolar ridges.The study was approved by the Animal Care Committee of Guangdong Pharmaceutical University(approval No.2017370). 展开更多
关键词 alveolar ridge augmentation micro-nano bioactive glass OSTEOINDUCTION sub-scaffold dental implant system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部