The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manne...Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.展开更多
Electrocatalytic N2 reduction to NH3 under ambient conditions is an eco-friendly and sustainable alternative to the traditional Haber-Bosch process. However, inhibited by the high activation barrier of N2, this proces...Electrocatalytic N2 reduction to NH3 under ambient conditions is an eco-friendly and sustainable alternative to the traditional Haber-Bosch process. However, inhibited by the high activation barrier of N2, this process needs efficient electrocatalysts to adsorb and activate the N2, enabling the N2 reduction reaction(NRR). Herein, we report that porous LaFeO3 nanofiber with oxygen vacancies acts as an efficient NRR electrocatalyst with abundant active sites to enhance the adsorption and activation of N2. When tested in 0.1 M HCl, such electrocatalyst achieves a high Faradaic efficiency of 8.77% and a large NH3 yield rate of 18.59 μg h–1 mgcat–1.at-0.55 V versus reversible hydrogen electrode. This catalyst also shows high long-term electrochemical stability and excellent selectivity for NH3 formation. Density functional theory calculations reveal that, by introducing oxygen vacancy on LaFeO3, the subsurface metallic ions are exposed with newly localized electronic states near the Fermi level, which facilitates the adsorption and activation of N2 molecules as well as the subsequent hydrogenation reactions.展开更多
Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3...Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability.展开更多
The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment...The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.展开更多
Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protect...Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protected.One-dimensional heat transfer models of a metal plate and imitative material were established to explore the influences of the thermophysical properties of imitative material on the surface temperature difference(STD) between the metal plate and imitative material which were subjected to periodical ambient conditions.It is elucidated that the STD is determined by the imitative material’s dimensionless thickness(dim*,) and the thermal inertia(Pim).When dim* is above 1.0,the STD is invariable as long as Pim is a constant.And if the dimensionless thickness of metal plate(d,m*) is also larger than 1.0,the STD approaches to zero as long as Pimis the same as the thermal inertia of metal plate(Pm).When dim* is between 0.08 and 1,the STD varies irregularly with Pim and dim*.However,if dm* is also in the range of 0.08-1,the STD approaches to zero on condition that Pim=Pm and dim*= dm*.If dim*,is below 0.08,the STD is unchanged when Pimdim* is a constant.And if dm* is also less than 0.08,the STD approaches to zero as long as Pimdim* = Pmdm*.Furthermore,an applicationoriented discussion indicates that the imitative material can be both light and thin via the application of the phase change material with a preset STD because of its high specific heat capacity during the phase transition process.展开更多
Thermal catalytic degradation of organic pollutants conducted in the dark at room temperature under atmospheric pressure without the need of external chemicals and energy sources has attracted a lot of attention over ...Thermal catalytic degradation of organic pollutants conducted in the dark at room temperature under atmospheric pressure without the need of external chemicals and energy sources has attracted a lot of attention over the last two decades. It provides unparalleled advantages over other advanced oxidation processes (AOPs) in treating domestic and industrial contaminated wastewater from the viewpoint of energy/chemical conservation and ease of operation. Rich knowledge has been accumulated in terms of the synthesis and application of thermal catalysts though controversies remain regarding their underlying mechanisms. This review sheds light on the proposed thermo- catalysis mechanism for the first time and presents the development of thermal catalysts under dark ambient conditions with a focus on catalyst materials, catalytic activity, and mechanism. The present review aims to provide mechanistic insights into the rational design of novel and efficient catalysts, and their underlying mechanisms as well as the emerging challenges and perspectives in thermo-catalysis under dark ambient conditions used for the practical and efficient treatment of contaminated wastewater.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
Here,we report a Pd/PdO_(x) sensing material that achieves 1-s detection of 4% H_(2) gas(i.e.,the lower explosive limit concentration for H_(2))at room temperature in air.The Pd/PdO_(x) material is a network of interc...Here,we report a Pd/PdO_(x) sensing material that achieves 1-s detection of 4% H_(2) gas(i.e.,the lower explosive limit concentration for H_(2))at room temperature in air.The Pd/PdO_(x) material is a network of interconnected nanoscopic domains of Pd,PdO,and PdO_(2).Upon exposure to 4% H_(2),PdO and PdO_(2) in the Pd/PdO_(x) are immediately reduced to metallic Pd,generating over a>90% drop in electrical resistance.The mechanistic study reveals that the Pd/PdO_(2) interface in Pd/PdOx is responsible for the ultrafast PdO_(x) reduction.Metallic Pd at the Pd/PdO_(2) interface enables fast H_(2) dissociation to adsorbed H atoms,significantly lowering the PdO2 reduction barrier.In addition,control experiments suggest that the interconnectivity of Pd,PdO,and PdO2 in our Pd/PdO_(x) sensing material further facilitates the reduction of PdO,which would otherwise not occur.The 1-s response time of Pd/PdO_(x) under ambient conditions makes it an excellent alarm for the timely detection of hydrogen gas leaks.展开更多
To date,the synthesis of crystalline ZnO nanostructures was often performed under high temperatures and/or high pressures with tiny output,which limits their commercial applications.Herein,we report the progress on sy...To date,the synthesis of crystalline ZnO nanostructures was often performed under high temperatures and/or high pressures with tiny output,which limits their commercial applications.Herein,we report the progress on synthesizing single-crystalline ZnO nanosheets under ambient conditions(i.e.,room temperature(RT)and atmospheric pressure)based on a sonochemistry strategy.Furthermore,their controllable growth is accomplished by adjusting the pH values of solutions,enabling the tailored crystal growth habits on the polar-charged faces of ZnO along c-axis.As a proof of concept for their potential applications,the ZnO nanosheets exhibit highly efficient performance for sensing ammonia at RT,with ultrahigh sensitivity(S=610 at 100 ppm),excellent selectivity,rapid detection(response time/recover time=70 s/4 s),and outstanding detection limit down to 0.5 ppm,superior to those of all pure ZnO nanostructures and most ZnO-based composite counterparts ever reported.The present work might open a door for controllable production of ZnO nanostructures under mild conditions,and facilitate the exploration of modern gas sensors for detecting gaseous molecules at RT,which underscores their potential toward practical applications in opto-electronic nanodevices.展开更多
Keggin-type molybdovanadophosphoric acids (HPA), H4PMo11VO40 (1), H5PMo10V2O40 (2) and H6PMo9V3O40 (3) were anchored onto γ-aminopropyltriethoxysilane (APTS) aminosilylated silica mesoporous SBA-15 through ...Keggin-type molybdovanadophosphoric acids (HPA), H4PMo11VO40 (1), H5PMo10V2O40 (2) and H6PMo9V3O40 (3) were anchored onto γ-aminopropyltriethoxysilane (APTS) aminosilylated silica mesoporous SBA-15 through acid-base neutralization and the resulting HPA/APTS/SBA-15 were characterized by BET, TEM, XRD, ICP, FFIR and ^31p MAS NMR. The characterization results indicate that the Keggin-structure of these HPAs is preserved within the mesoporous silica host. The samples were tested for catalytic aerobic oxidation of acetaldehyde heterogeneously in liquid phase under ambient condition. The electrostatic force between heteropoly acid and amino groups grafted on the silica channel surface leads to strong immobilization of HPA inside SBA-15 which is against the leaching during the reaction. The good catalytic performance and easy recycle of these catalysts make them as potential environmental friendly catalysts for elimination of indoor air pollutants.展开更多
Subject Code:H07 With the support from the National Natural Science Foundation of China and HGZ-CAS,a collaborative study by the research groups led by Prof.Chen Ping(陈萍)from Dalian Institute of Chemical Physics,Chi...Subject Code:H07 With the support from the National Natural Science Foundation of China and HGZ-CAS,a collaborative study by the research groups led by Prof.Chen Ping(陈萍)from Dalian Institute of Chemical Physics,Chinese Academy of Sciences and Prof.M.Dornheim,Helmholtz-Zentrum Geesthacht,Germany展开更多
In this editorial we comment on the article by Zhang et al published in the recent issue of the World Journal of Psychiatry.We focus on identity diffusion,identity perturbations,their origin and developmental pathways...In this editorial we comment on the article by Zhang et al published in the recent issue of the World Journal of Psychiatry.We focus on identity diffusion,identity perturbations,their origin and developmental pathways.This is an upcoming problem in the society as not only school children are affected.Adolescents and young people suffer from uncertainty in gender identity,in self-image,migration effects due to chronic crises caused by war,pandemic disruptions or climate change.We show how such chronic uncertainty can be cared for,treated,and contained.The key is affective holding,reflection and to provide adequate affective mentalizing in a close concomitant way.These key features also depend on ambient conditions,such as psychotherapeutic care.In a qualitative interview study carried out in a cyclical research design with a comparative analysis on the basis of thematic coding using Grounded Theory Methodology we found institu-tionalized defenses in health policies.Professionals request better training and adequat academic knowledge as well as research into unresolved areas for improvement of the ambient conditions for adequat development of the self.Practice points for further clinical and scientific development are given and discussed.展开更多
The efficient and stable abatement of CO pollutant under ambient conditions is of great significance;however,it remains a formidable challenge.Herein,we report the versatile application of wet oxidation over Fe(OH)x s...The efficient and stable abatement of CO pollutant under ambient conditions is of great significance;however,it remains a formidable challenge.Herein,we report the versatile application of wet oxidation over Fe(OH)x supported subnanometer Pt group metal(PGM)catalysts for the complete removal of CO under ambient temperature and humidity conditions.Typically,the 1.8 wt%Rh/Fe(OH)x catalyst exhibited better durability during a^1400 min run for wet oxidation than for dry CO oxidation.Multiple characterization results including HR-TEM,H2-TPR,and in-situ DRIFTS suggested that Fe(OH)x,with good reducibility,promoted by the subnanometer Rh clusters,provided sites for the adsorption and reaction of O2 and H2 O to form OH species.Subsequently,these OH species reacted with the adsorbed CO on Rh sites with a considerably lower activation energy(9 kJ mol^-1)than that of dissociated 0 species(22 kJ mol^-1),thus rationalizing the outstanding performance of Rh/Fe(OH)x for wet oxidation.Extended experiments with other PGMs revealed a good generality for the application of wet oxidation in the efficient abatement of CO under humid conditions with Fe(OH)x as the support.展开更多
To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature condit...To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.展开更多
With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PS...With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones.Herein,the additive methylammonium chloride(MACl)is introduced to modulate the crystallization and orientation of a two-step sequential doctorbladed perovskite film in ambient conditions.MACl can significantly improve perovskite film quality and increase grain size and crystallinity,thus decreasing trap density and suppressing nonradiative recombination.Meanwhile,MACl also promotes the preferred face-up orientation of the(100)plane of perovskite film,which is more conducive to the transport and collection of carriers,thereby significantly improving the fill factor.As a result,a champion PCE of 23.14%and excellent longterm stability are achieved for PSCs based on the structure of ITO/SnO_(2)/FA_(1-x)MA_xPb(I_(1-y)Br_y)_3/Spiro-OMeTAD/Ag.The superior PCEs of 21.20%and 17.54%are achieved for 1.03 cm~2 PSC and 10.93 cm~2 mini-module,respectively.These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.展开更多
Currently,the synthesis of nanostructures still encounters two grand challenges:one is the often-required high temperatures and/or high pressures,and the other is the scalable fabrication.Here,to break through such bo...Currently,the synthesis of nanostructures still encounters two grand challenges:one is the often-required high temperatures and/or high pressures,and the other is the scalable fabrication.Here,to break through such bottlenecks,we demonstrate an ambient-condition strategy for rapid mass production of fourthgeneration semiconductor Ga_(2)O_(3)nanoarchitectures assembled by single-crystalline nanosheets in a controlled manner based on sonochemistry.Their growth is fundamentally determined by the introduced ethanediamine in rationally designed source materials,which could not only protect the metal Ga against reacting with H_(2)O into GaOOH,but facilitate the reaction of Ga with OH·radicals for target crystalline Ga_(2)O_(3)nanostructures.As a proof of concept for applications,the as-fabricated Ga_(2)O_(3)nanoarchitectures exhibit superb performances for electromagnetic wave absorption with a reflection loss value of 52.2 dB at 8.1 GHz,and ammonia sensing with high sensitivity and selectivity at room temperature,representing their bright future to be commercially applied in modern devices.展开更多
Perovskite solar cells(PSCs)have attracted tremendous attention as a promising alternative candidate for clean energy generation.Many attempts have been made with various deposition techniques to scale-up manufacturin...Perovskite solar cells(PSCs)have attracted tremendous attention as a promising alternative candidate for clean energy generation.Many attempts have been made with various deposition techniques to scale-up manufacturing.Slot-die coating is a robust and facile deposition technique that can be applied in large-area roll-to-roll(R2R)fabrication of thin film solar cells with the advantages of high material utilization,low cost and high throughput.Herein,we demonstrate the encouraging result of PSCs prepared by slot-die coating under ambient environment using a twostep sequential process whereby PbI_(2):CsI is slot-die coated first followed by a subsequent slot-die coating of organic cations containing solution.A porous PbI_(2):CsI film can promote the rapid and complete transformation into perovskite film.The crystallinity and morphology of perovskite films are significantly improved by optimizing nitrogen blowing and controlling substrate temperature.A power conversion efficiency(PCE)of 18.13%is achieved,which is promising for PSCs fabricated by two-step fully slot-die-coated devices.Furthermore,PSCs with a 1 cm2 area yield a champion PCE of 15.10%.Moreover,a PCE of 13.00%is obtained on a flexible substrate by the roll-to-roll(R2R)coating,which is one of the highest reported cells with all layers except for metal electrode fabricated by R2R process under ambient condition.展开更多
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金the National Natural Science Foundation of China(NSFC,Grant No.51972178)the Natural Science Foundation of Ningbo(2022J139)the Ningbo Yongjiang Talent Introduction Programme(2022A-227-G).
文摘Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.
基金the National Natural Science Foundation of China(Nos.21575137 and 11704005)。
文摘Electrocatalytic N2 reduction to NH3 under ambient conditions is an eco-friendly and sustainable alternative to the traditional Haber-Bosch process. However, inhibited by the high activation barrier of N2, this process needs efficient electrocatalysts to adsorb and activate the N2, enabling the N2 reduction reaction(NRR). Herein, we report that porous LaFeO3 nanofiber with oxygen vacancies acts as an efficient NRR electrocatalyst with abundant active sites to enhance the adsorption and activation of N2. When tested in 0.1 M HCl, such electrocatalyst achieves a high Faradaic efficiency of 8.77% and a large NH3 yield rate of 18.59 μg h–1 mgcat–1.at-0.55 V versus reversible hydrogen electrode. This catalyst also shows high long-term electrochemical stability and excellent selectivity for NH3 formation. Density functional theory calculations reveal that, by introducing oxygen vacancy on LaFeO3, the subsurface metallic ions are exposed with newly localized electronic states near the Fermi level, which facilitates the adsorption and activation of N2 molecules as well as the subsequent hydrogenation reactions.
基金supported by the National Natural Science Foundation of China(grant no.21904071 and 22071115)。
文摘Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability.
文摘The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.
基金funded by the National Natural Science Foundation of China (No. 51576188)
文摘Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protected.One-dimensional heat transfer models of a metal plate and imitative material were established to explore the influences of the thermophysical properties of imitative material on the surface temperature difference(STD) between the metal plate and imitative material which were subjected to periodical ambient conditions.It is elucidated that the STD is determined by the imitative material’s dimensionless thickness(dim*,) and the thermal inertia(Pim).When dim* is above 1.0,the STD is invariable as long as Pim is a constant.And if the dimensionless thickness of metal plate(d,m*) is also larger than 1.0,the STD approaches to zero as long as Pimis the same as the thermal inertia of metal plate(Pm).When dim* is between 0.08 and 1,the STD varies irregularly with Pim and dim*.However,if dm* is also in the range of 0.08-1,the STD approaches to zero on condition that Pim=Pm and dim*= dm*.If dim*,is below 0.08,the STD is unchanged when Pimdim* is a constant.And if dm* is also less than 0.08,the STD approaches to zero as long as Pimdim* = Pmdm*.Furthermore,an applicationoriented discussion indicates that the imitative material can be both light and thin via the application of the phase change material with a preset STD because of its high specific heat capacity during the phase transition process.
基金funding support by the National Natural Science Foundation of China (51674091, 51104048)~~
文摘Thermal catalytic degradation of organic pollutants conducted in the dark at room temperature under atmospheric pressure without the need of external chemicals and energy sources has attracted a lot of attention over the last two decades. It provides unparalleled advantages over other advanced oxidation processes (AOPs) in treating domestic and industrial contaminated wastewater from the viewpoint of energy/chemical conservation and ease of operation. Rich knowledge has been accumulated in terms of the synthesis and application of thermal catalysts though controversies remain regarding their underlying mechanisms. This review sheds light on the proposed thermo- catalysis mechanism for the first time and presents the development of thermal catalysts under dark ambient conditions with a focus on catalyst materials, catalytic activity, and mechanism. The present review aims to provide mechanistic insights into the rational design of novel and efficient catalysts, and their underlying mechanisms as well as the emerging challenges and perspectives in thermo-catalysis under dark ambient conditions used for the practical and efficient treatment of contaminated wastewater.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金The work at Wayne State University and the Pacific Northwest National Laboratory was supported by the U.S.Department of Energy(DOE),Office of Science,Office of Basic Energy Sciences,through Award#78705In addition,L.L.and X.G.acknowledge support from National Science Foundation under award CHE-1943737.L.Z.and S.W.L.acknowledge support from the National Natural Science Foundation of China(No.22103047)Hefei National Laboratory for Physical Sciences at the Microscale(No.KF2020107).
文摘Here,we report a Pd/PdO_(x) sensing material that achieves 1-s detection of 4% H_(2) gas(i.e.,the lower explosive limit concentration for H_(2))at room temperature in air.The Pd/PdO_(x) material is a network of interconnected nanoscopic domains of Pd,PdO,and PdO_(2).Upon exposure to 4% H_(2),PdO and PdO_(2) in the Pd/PdO_(x) are immediately reduced to metallic Pd,generating over a>90% drop in electrical resistance.The mechanistic study reveals that the Pd/PdO_(2) interface in Pd/PdOx is responsible for the ultrafast PdO_(x) reduction.Metallic Pd at the Pd/PdO_(2) interface enables fast H_(2) dissociation to adsorbed H atoms,significantly lowering the PdO2 reduction barrier.In addition,control experiments suggest that the interconnectivity of Pd,PdO,and PdO2 in our Pd/PdO_(x) sensing material further facilitates the reduction of PdO,which would otherwise not occur.The 1-s response time of Pd/PdO_(x) under ambient conditions makes it an excellent alarm for the timely detection of hydrogen gas leaks.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51972178)Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX20200454).
文摘To date,the synthesis of crystalline ZnO nanostructures was often performed under high temperatures and/or high pressures with tiny output,which limits their commercial applications.Herein,we report the progress on synthesizing single-crystalline ZnO nanosheets under ambient conditions(i.e.,room temperature(RT)and atmospheric pressure)based on a sonochemistry strategy.Furthermore,their controllable growth is accomplished by adjusting the pH values of solutions,enabling the tailored crystal growth habits on the polar-charged faces of ZnO along c-axis.As a proof of concept for their potential applications,the ZnO nanosheets exhibit highly efficient performance for sensing ammonia at RT,with ultrahigh sensitivity(S=610 at 100 ppm),excellent selectivity,rapid detection(response time/recover time=70 s/4 s),and outstanding detection limit down to 0.5 ppm,superior to those of all pure ZnO nanostructures and most ZnO-based composite counterparts ever reported.The present work might open a door for controllable production of ZnO nanostructures under mild conditions,and facilitate the exploration of modern gas sensors for detecting gaseous molecules at RT,which underscores their potential toward practical applications in opto-electronic nanodevices.
基金Project supported by the National Natural Science Foundation Committee of China (Nos. 20371013, 20273017, 20421303) and the Major State Basic Research Development Program of China (No. 2003CB615807).
文摘Keggin-type molybdovanadophosphoric acids (HPA), H4PMo11VO40 (1), H5PMo10V2O40 (2) and H6PMo9V3O40 (3) were anchored onto γ-aminopropyltriethoxysilane (APTS) aminosilylated silica mesoporous SBA-15 through acid-base neutralization and the resulting HPA/APTS/SBA-15 were characterized by BET, TEM, XRD, ICP, FFIR and ^31p MAS NMR. The characterization results indicate that the Keggin-structure of these HPAs is preserved within the mesoporous silica host. The samples were tested for catalytic aerobic oxidation of acetaldehyde heterogeneously in liquid phase under ambient condition. The electrostatic force between heteropoly acid and amino groups grafted on the silica channel surface leads to strong immobilization of HPA inside SBA-15 which is against the leaching during the reaction. The good catalytic performance and easy recycle of these catalysts make them as potential environmental friendly catalysts for elimination of indoor air pollutants.
文摘Subject Code:H07 With the support from the National Natural Science Foundation of China and HGZ-CAS,a collaborative study by the research groups led by Prof.Chen Ping(陈萍)from Dalian Institute of Chemical Physics,Chinese Academy of Sciences and Prof.M.Dornheim,Helmholtz-Zentrum Geesthacht,Germany
文摘In this editorial we comment on the article by Zhang et al published in the recent issue of the World Journal of Psychiatry.We focus on identity diffusion,identity perturbations,their origin and developmental pathways.This is an upcoming problem in the society as not only school children are affected.Adolescents and young people suffer from uncertainty in gender identity,in self-image,migration effects due to chronic crises caused by war,pandemic disruptions or climate change.We show how such chronic uncertainty can be cared for,treated,and contained.The key is affective holding,reflection and to provide adequate affective mentalizing in a close concomitant way.These key features also depend on ambient conditions,such as psychotherapeutic care.In a qualitative interview study carried out in a cyclical research design with a comparative analysis on the basis of thematic coding using Grounded Theory Methodology we found institu-tionalized defenses in health policies.Professionals request better training and adequat academic knowledge as well as research into unresolved areas for improvement of the ambient conditions for adequat development of the self.Practice points for further clinical and scientific development are given and discussed.
基金supported by the National Natural Science Foundation of China(21576251,21676269,21808212,21878283)the Youth Innovation Promotion Association CAS(2017223)+5 种基金the “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDB17020100)National Key Projects for Fundamental Research and Development of China(2016YFA0202801)China Postdoctoral Science Foundation(2019M652578)the Postdoctoral Sponsorship in Henan Province(1902015)Science and Technology Program of Henan Province(192102210034)Zhongyuan Postdoctoral Program for Innovation Talents~~
文摘The efficient and stable abatement of CO pollutant under ambient conditions is of great significance;however,it remains a formidable challenge.Herein,we report the versatile application of wet oxidation over Fe(OH)x supported subnanometer Pt group metal(PGM)catalysts for the complete removal of CO under ambient temperature and humidity conditions.Typically,the 1.8 wt%Rh/Fe(OH)x catalyst exhibited better durability during a^1400 min run for wet oxidation than for dry CO oxidation.Multiple characterization results including HR-TEM,H2-TPR,and in-situ DRIFTS suggested that Fe(OH)x,with good reducibility,promoted by the subnanometer Rh clusters,provided sites for the adsorption and reaction of O2 and H2 O to form OH species.Subsequently,these OH species reacted with the adsorbed CO on Rh sites with a considerably lower activation energy(9 kJ mol^-1)than that of dissociated 0 species(22 kJ mol^-1),thus rationalizing the outstanding performance of Rh/Fe(OH)x for wet oxidation.Extended experiments with other PGMs revealed a good generality for the application of wet oxidation in the efficient abatement of CO under humid conditions with Fe(OH)x as the support.
基金support from the National Natural Science Foundation of China(No.41972283)。
文摘To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.
基金supported by the National Key Research and Development Program of China(2022YFB3803300)the National Natural Science Foundation of China(51673214)the State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘With the rapid rise in perovskite solar cells(PSCs)performance,it is imperative to develop scalable fabrication techniques to accelerate potential commercialization.However,the power conversion efficiencies(PCEs)of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones.Herein,the additive methylammonium chloride(MACl)is introduced to modulate the crystallization and orientation of a two-step sequential doctorbladed perovskite film in ambient conditions.MACl can significantly improve perovskite film quality and increase grain size and crystallinity,thus decreasing trap density and suppressing nonradiative recombination.Meanwhile,MACl also promotes the preferred face-up orientation of the(100)plane of perovskite film,which is more conducive to the transport and collection of carriers,thereby significantly improving the fill factor.As a result,a champion PCE of 23.14%and excellent longterm stability are achieved for PSCs based on the structure of ITO/SnO_(2)/FA_(1-x)MA_xPb(I_(1-y)Br_y)_3/Spiro-OMeTAD/Ag.The superior PCEs of 21.20%and 17.54%are achieved for 1.03 cm~2 PSC and 10.93 cm~2 mini-module,respectively.These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.
基金Top Talent Project of Ningbo Municipal Government,National Natural Science Foundation of China(No.51972178)。
文摘Currently,the synthesis of nanostructures still encounters two grand challenges:one is the often-required high temperatures and/or high pressures,and the other is the scalable fabrication.Here,to break through such bottlenecks,we demonstrate an ambient-condition strategy for rapid mass production of fourthgeneration semiconductor Ga_(2)O_(3)nanoarchitectures assembled by single-crystalline nanosheets in a controlled manner based on sonochemistry.Their growth is fundamentally determined by the introduced ethanediamine in rationally designed source materials,which could not only protect the metal Ga against reacting with H_(2)O into GaOOH,but facilitate the reaction of Ga with OH·radicals for target crystalline Ga_(2)O_(3)nanostructures.As a proof of concept for applications,the as-fabricated Ga_(2)O_(3)nanoarchitectures exhibit superb performances for electromagnetic wave absorption with a reflection loss value of 52.2 dB at 8.1 GHz,and ammonia sensing with high sensitivity and selectivity at room temperature,representing their bright future to be commercially applied in modern devices.
基金the National Natural Science Foundation of China(Grant No.52173192)the National Key Research and Development Program of China(Grant No.2017YFA0206600)+1 种基金HL also acknowledges the support from the Key Innovation Project of Graduate of Central South University(Grant No.2018ZZTS106)and China Scholarship Council programOpen access funding provided by Shanghai Jiao Tong University
文摘Perovskite solar cells(PSCs)have attracted tremendous attention as a promising alternative candidate for clean energy generation.Many attempts have been made with various deposition techniques to scale-up manufacturing.Slot-die coating is a robust and facile deposition technique that can be applied in large-area roll-to-roll(R2R)fabrication of thin film solar cells with the advantages of high material utilization,low cost and high throughput.Herein,we demonstrate the encouraging result of PSCs prepared by slot-die coating under ambient environment using a twostep sequential process whereby PbI_(2):CsI is slot-die coated first followed by a subsequent slot-die coating of organic cations containing solution.A porous PbI_(2):CsI film can promote the rapid and complete transformation into perovskite film.The crystallinity and morphology of perovskite films are significantly improved by optimizing nitrogen blowing and controlling substrate temperature.A power conversion efficiency(PCE)of 18.13%is achieved,which is promising for PSCs fabricated by two-step fully slot-die-coated devices.Furthermore,PSCs with a 1 cm2 area yield a champion PCE of 15.10%.Moreover,a PCE of 13.00%is obtained on a flexible substrate by the roll-to-roll(R2R)coating,which is one of the highest reported cells with all layers except for metal electrode fabricated by R2R process under ambient condition.