High acceleration of radar targets is analyzed using Acceleration Ambiguity Function (AAF). The acceleration resolution based on AAF is defined. The AAF and acceleration resolution of rectangle pulse signal are deriva...High acceleration of radar targets is analyzed using Acceleration Ambiguity Function (AAF). The acceleration resolution based on AAF is defined. The AAF and acceleration resolution of rectangle pulse signal are derivated and the conclusion that its acceleration resolution is in inverse proportion with the square of its duration is drawn. In the end, these conclusions are applied to the parameter designing and performance evaluation for a certain type of pulse Doppler radar.展开更多
Passive radar is one of the current research focuses. The implementation of the Chinese standard digital television terrestrial broadcasting (DTTB) creates a new opportunity for passive radar. DTTB system contains s...Passive radar is one of the current research focuses. The implementation of the Chinese standard digital television terrestrial broadcasting (DTTB) creates a new opportunity for passive radar. DTTB system contains single-carrier and multicarrier application modes. In this paper, ambiguity functions of the D'I-I'B signals in the single-carrier and multicarrier application modes are analyzed. Ambiguity function of the DTTB signal contains one main peak and many side peaks. The relative positions and amplitudes of the side peaks are derived and the reasons for the occurrence of the side peaks are obtained. The side peaks identification (SPI) algorithm is proposed for avoiding the false alarms caused by the side peaks. Experimental results show that the SPI algorithm can indentify all the side peaks without the power loss. This research provides the foundation for designing the DTTB based passive radar.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking var...A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation,which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.展开更多
文摘High acceleration of radar targets is analyzed using Acceleration Ambiguity Function (AAF). The acceleration resolution based on AAF is defined. The AAF and acceleration resolution of rectangle pulse signal are derivated and the conclusion that its acceleration resolution is in inverse proportion with the square of its duration is drawn. In the end, these conclusions are applied to the parameter designing and performance evaluation for a certain type of pulse Doppler radar.
基金Supported by the National Natural Science Foundation of China (Grant No. 60232010)the Ministerial Foundation of China (Grant No.A2220060039)the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104)
文摘Passive radar is one of the current research focuses. The implementation of the Chinese standard digital television terrestrial broadcasting (DTTB) creates a new opportunity for passive radar. DTTB system contains single-carrier and multicarrier application modes. In this paper, ambiguity functions of the D'I-I'B signals in the single-carrier and multicarrier application modes are analyzed. Ambiguity function of the DTTB signal contains one main peak and many side peaks. The relative positions and amplitudes of the side peaks are derived and the reasons for the occurrence of the side peaks are obtained. The side peaks identification (SPI) algorithm is proposed for avoiding the false alarms caused by the side peaks. Experimental results show that the SPI algorithm can indentify all the side peaks without the power loss. This research provides the foundation for designing the DTTB based passive radar.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
文摘A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations,which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation,which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.