Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS- like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates ...Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS- like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold perfor- mance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application.展开更多
We report the composition and back-gate voltage tuned transport properties of ternary compound Bi2(Te1−xSex)3 nanowires synthesized by chemical vapor deposition(CVD).It is found that the population of bulk carriers ca...We report the composition and back-gate voltage tuned transport properties of ternary compound Bi2(Te1−xSex)3 nanowires synthesized by chemical vapor deposition(CVD).It is found that the population of bulk carriers can be suppressed effectively with increasing the Se concentration x.In Bi2(Te1−xSex)3 nanowires with x=25%±5%,the ambipolar surface conduction associated with tuning the Fermi energy across the Dirac point of topological surface states is induced by applying a back-gate voltage.Importantly,we find that while the magnetoresistance(MR)follows the weak antilocalization(WAL)behavior when the Fermi level is tuned away from the Dirac point,MR is enhanced in magnitude and turns more linear in the whole magnetic field range(between±9 T)near the Dirac point.The observation of the enhanced linear magneto-resistance(LMR)and crossover from WAL to LMR,near the Dirac point provides a deeper insight into understanding the nature of topological insulator’s surface transport and the relation between these two widely observed magneto-transport phenomena.展开更多
基金Project supported by the National High-Tech Research & Development Program of China(Nos.2009AA01Z124,2009AA01Z114)
文摘Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS- like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold perfor- mance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application.
基金supported by the National Natural Science Foundation of China(No.51971220)the National Basic Research Program of China(No.2017YFA0206302).X.P.A.G.thanks the National Science Foundation for its financial support under Award DMR-1607631.
文摘We report the composition and back-gate voltage tuned transport properties of ternary compound Bi2(Te1−xSex)3 nanowires synthesized by chemical vapor deposition(CVD).It is found that the population of bulk carriers can be suppressed effectively with increasing the Se concentration x.In Bi2(Te1−xSex)3 nanowires with x=25%±5%,the ambipolar surface conduction associated with tuning the Fermi energy across the Dirac point of topological surface states is induced by applying a back-gate voltage.Importantly,we find that while the magnetoresistance(MR)follows the weak antilocalization(WAL)behavior when the Fermi level is tuned away from the Dirac point,MR is enhanced in magnitude and turns more linear in the whole magnetic field range(between±9 T)near the Dirac point.The observation of the enhanced linear magneto-resistance(LMR)and crossover from WAL to LMR,near the Dirac point provides a deeper insight into understanding the nature of topological insulator’s surface transport and the relation between these two widely observed magneto-transport phenomena.