The work presents the synthesis and characterization of amidated pectin(AP) based polymer electrolyte membranes(PEM) crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform in...The work presents the synthesis and characterization of amidated pectin(AP) based polymer electrolyte membranes(PEM) crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA) and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(Y_M and K_N) are calcu...展开更多
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules a...The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules as a promising new precursor of insecticide.A series of amide-containing derivatives ofβ-pinene were synthesized and characterized.The insecticidal activities of these derivatives against Mythimna separate and Semiaphis heraclei were tested.The structure characterization results showed that the characterization data of amide-containing derivatives were in full agreement with their proposed structures.The insecticidal activities evaluation results indicated that amide-containing derivatives exhibited weak insecticidal activity against Mythimna separate,but exhibited moderate to good insecticidal activity against Semiaphis heraclei.After testing for 72 h,the corrected mortality against Semiaphis heraclei of compounds 5c,5e,5f,5 h,5j,and 5 m was 100%at 1000 mg/L.The structure-activity relationship analysis results showed that the introduction of an amide group into the structure of derivatives improved their insecticidal activity against Semiaphis heraclei.Meanwhile,the amide-containing derivatives containing the F and NO_(2) substituted benzene ring might improve their insecticidal activity against Semiaphis heraclei.This study will be helpful for the high value-added utilization of the natural renewable resourceβ-pinene and the development of novel insecticides.展开更多
The methanolysis of amides,which is widely employed in the synthetic organic chemistry,hardly occurs under mild conditions.To safely and controllably intensify the methanolysis reaction with hightemperature and high-p...The methanolysis of amides,which is widely employed in the synthetic organic chemistry,hardly occurs under mild conditions.To safely and controllably intensify the methanolysis reaction with hightemperature and high-pressure environment,a continuous tubular reaction technology is developed,whose space-time yield is over twice of that of the conventional batch reaction.The methanolysis of acetanilide is selected as the representative reaction,and the influences of temperature,pressure,reactant and catalyst concentration,and residence time on the reaction performances are systematically investigated.Taking the advantages of precise temperature and reaction time control by the tubular reactor,the kinetics of acetanilide methanolysis are determined and compared to the kinetics of acetanilide hydrolysis reaction.The tubular reaction method is also employed to test a variety of other amides to show the effects of substituents,steric hindrance,and alkalinity on the reaction rate of methanolysis.展开更多
High and cost-efficient capture of CO_(2) is a prerequisite and an inevitable path of carbon emission reduction. To address the challenges(high cost, low efficiency, less sustainability, etc.) of existing petroleum-ba...High and cost-efficient capture of CO_(2) is a prerequisite and an inevitable path of carbon emission reduction. To address the challenges(high cost, low efficiency, less sustainability, etc.) of existing petroleum-based CO_(2) absorbents, herein, a class of efficient and sustainable lignin-based absorbents were resoundingly prepared by grafting the active amine group on a lignin derived compound vanillin and alkali lignin. The results demonstrated that vanillin modified by acrylamide achieved the excellent absorption capacity among the three absorbents, whose ability was 0.114 g CO_(2) per gram of absorbent under 25 ℃ and 100 kPa. In addition, the absorbent retained stable absorbability of CO_(2) after 6 cycles.The absorbing capacity of the absorbent formed by the coupling of vanillin and acrylamide to CO_(2) was much greater than their own(i.e. 0 g CO_(2) ·g^(-1)vanillin, 0.01 g CO_(2) ·g^(-1) acrylamide, respectively).Detailed information revealed the multi-site synergistic absorption mechanism, in which CO_(2) has C and O double interactions with the amide group of the absorbent, and single interaction with the hydroxyl oxygen on the benzene ring of the absorbent. The absorption capacity of modified lignin for CO_(2) is as high as 0.12 g CO_(2) per gram of absorbent, which is comparable with that of model compound vanillin.This work not only provides a new idea for the design of bio-absorbents for CO_(2) capture, but explores the application potential of lignin-based materials.展开更多
Three new amide derivatives(alteralkaloids A-C,1-3)and three known alkaloids(4-6)were afforded after phytochemical investigation of fungus Alternaria brassicicola.The structures of these compounds were confirmed by NM...Three new amide derivatives(alteralkaloids A-C,1-3)and three known alkaloids(4-6)were afforded after phytochemical investigation of fungus Alternaria brassicicola.The structures of these compounds were confirmed by NMR spectroscopic and HRESIMS data.Furthermore,the absolute configuration of 1 was determined using the single-crystal X-ray diffraction analysis.Compounds 1-3 belong to a class of amide derivatives that have not been found in nature before,sharing the same characteristic signals of the butyl moiety and amide group.These isolated compounds mentioned above were tested for the cytotoxic activity.展开更多
We review the use of nuclear magnetic resonance(NMR)spectroscopy to assess the exchange of amide protons for deuterons(HDX)in efforts to understand how high concentration of cosolutes,especially macromolecules,affect ...We review the use of nuclear magnetic resonance(NMR)spectroscopy to assess the exchange of amide protons for deuterons(HDX)in efforts to understand how high concentration of cosolutes,especially macromolecules,affect the equilibrium thermodynamics of protein stability.HDX NMR is the only method that can routinely provide such data at the level of individual amino acids.We begin by discussing the properties of the protein systems required to yield equilibrium thermodynamic data and then review publications using osmolytes,sugars,denaturants,synthetic polymers,proteins,cytoplasm and in cells.展开更多
The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain ...The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals.The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO_(2) reduction via introducing N sources is an effective strategy to expand the product scope,since chemicals con-taining C–N bonds(e.g.amides and amines)are important reactants/products for medicine,agriculture and in-dustry.This article focuses on the research progress of C–N coupling from CO_(2) and inorganic nitrogenous species in aqueous solution.Firstly,the reaction pathways related to the reaction intermediates for urea,formamide,acetamide,methylamine and ethylamine are highlighted.Then,the electrocatalytic performance of different catalysts for these several N-containing products are summarized and classified.Finally,the challenges and op-portunities are analyzed,aiming to provide general insights into future research directions for electrocatalytic C–N coupling.展开更多
Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accu...Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.展开更多
Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of ...Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of Weinreb amide; N hydroxysuccinimide activated ester was used in peptide synthesis; and Boc as N protecting group of amino acid. Results Boc Asp(OBzl) N(OMe)Me (3), Boc β Ala Asp(OBzl) N(OMe)Me (5), and Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) were synthesized successfully. Conclusion An useful precursor of tripeptide aspartyl aldehydes was synthesized.展开更多
The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretchin...The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.展开更多
The widespread use of chemical herbicides especially amide herbicides has promoted the innovation of chemical weeding in farmland, but amide herbicides have brought invisible chemical injuries to crops in addition to ...The widespread use of chemical herbicides especially amide herbicides has promoted the innovation of chemical weeding in farmland, but amide herbicides have brought invisible chemical injuries to crops in addition to weeding. Herbi-cidesafeners should be applied at the same time with herbicides to ensure herbi- cides will not injure crops while controlling weeds. The research and application of safeners is of great significance to resolving or alleviating the negative effects of herbicides on crop growth. The overview, mechanism, applied research progress and existing problems of amide herbicides and their safenars are summarized.展开更多
[Objective] This study aimed to analyze the deprotection of acetyl group on amino group. [Method] A simple, convenient one-pot amino protection group of amide removed by thionyl chloride and pyridine via efficient chl...[Objective] This study aimed to analyze the deprotection of acetyl group on amino group. [Method] A simple, convenient one-pot amino protection group of amide removed by thionyl chloride and pyridine via efficient chlorination and hydroly- sis with 1, 2-dichloroethane as solvent at ambient temperature has been developed. [Result] Pyridine is crucial to the reaction; the best solvent is 1, 2-dichloroethane, and the most suitable reaction temperature is the ambient temperature; in addition, the yield is the highest as the molar ratio of pyridine to N-(4-bromophenyl) ac- etamide is 1:1. [Conclusion] The significant features of this protocol include short re- action time, cleaner reaction profiles, under mild reaction conditions and easy purifi- cation, and simple workup that precludes the use of toxic solvents.展开更多
Natural bioactive compounds from plants are of great importance in modern therapeutics,which are used to prepare antibiotics, growth supplements or some other therapeutics. Ltheanine is such a bioactive amide amino ac...Natural bioactive compounds from plants are of great importance in modern therapeutics,which are used to prepare antibiotics, growth supplements or some other therapeutics. Ltheanine is such a bioactive amide amino acid presented in different plants and fungi,especially in tea. Theanine has influential effects on lifestyle associated diseases, such as diabetes, cardiovascular disorders, hypertension, stress relief, tumor suppression,menstruation and liver injury. This amino acid can maintain normal sleep and improve memory function and nullify effect of the neurotoxins. The rate of bioavailability and its medium of ingestion in the body is one of the great concerns for its additional antioxidant properties. Pharmacokinetics of the bioactive compound and its mode of action are described herewith. The biosynthesis and industrial synthesis are also reviewed to promote accelerated production of this bioactive compound in the pharmaceutical industries.展开更多
文摘The work presents the synthesis and characterization of amidated pectin(AP) based polymer electrolyte membranes(PEM) crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA) and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(Y_M and K_N) are calcu...
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
基金This work is financially supported by the Youth Talent Project of Major Academic and Technical Leaders Training Program of Jiangxi Province(Grant No.20204BCJL23045)the National Natural Science Foundation of China(Grant No.31800493)+1 种基金the Special Research Project on Camphor Tree(KRPCT)of Jiangxi Forestry Department(Grant No.2020CXZX07)the Innovative Leading Talent Short-Term Project in the Natural Science Area of Jiangxi Province(jxsq2018102072).
文摘The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules as a promising new precursor of insecticide.A series of amide-containing derivatives ofβ-pinene were synthesized and characterized.The insecticidal activities of these derivatives against Mythimna separate and Semiaphis heraclei were tested.The structure characterization results showed that the characterization data of amide-containing derivatives were in full agreement with their proposed structures.The insecticidal activities evaluation results indicated that amide-containing derivatives exhibited weak insecticidal activity against Mythimna separate,but exhibited moderate to good insecticidal activity against Semiaphis heraclei.After testing for 72 h,the corrected mortality against Semiaphis heraclei of compounds 5c,5e,5f,5 h,5j,and 5 m was 100%at 1000 mg/L.The structure-activity relationship analysis results showed that the introduction of an amide group into the structure of derivatives improved their insecticidal activity against Semiaphis heraclei.Meanwhile,the amide-containing derivatives containing the F and NO_(2) substituted benzene ring might improve their insecticidal activity against Semiaphis heraclei.This study will be helpful for the high value-added utilization of the natural renewable resourceβ-pinene and the development of novel insecticides.
基金the financial support from the National Natural Science Foundation of China(21991104)the Shandong Province Major Science and Technology Innovation Project(2019JZZY020401)。
文摘The methanolysis of amides,which is widely employed in the synthetic organic chemistry,hardly occurs under mild conditions.To safely and controllably intensify the methanolysis reaction with hightemperature and high-pressure environment,a continuous tubular reaction technology is developed,whose space-time yield is over twice of that of the conventional batch reaction.The methanolysis of acetanilide is selected as the representative reaction,and the influences of temperature,pressure,reactant and catalyst concentration,and residence time on the reaction performances are systematically investigated.Taking the advantages of precise temperature and reaction time control by the tubular reactor,the kinetics of acetanilide methanolysis are determined and compared to the kinetics of acetanilide hydrolysis reaction.The tubular reaction method is also employed to test a variety of other amides to show the effects of substituents,steric hindrance,and alkalinity on the reaction rate of methanolysis.
基金supported by National Natural Science Foundation of China (22078023, 22178187)Natural Science Foundation of Shandong Province (ZR202102180830)+1 种基金Taishan Scholars Program of Shandong Province (tsqn201909091)the Startup Foundation of China (3160011181808)。
文摘High and cost-efficient capture of CO_(2) is a prerequisite and an inevitable path of carbon emission reduction. To address the challenges(high cost, low efficiency, less sustainability, etc.) of existing petroleum-based CO_(2) absorbents, herein, a class of efficient and sustainable lignin-based absorbents were resoundingly prepared by grafting the active amine group on a lignin derived compound vanillin and alkali lignin. The results demonstrated that vanillin modified by acrylamide achieved the excellent absorption capacity among the three absorbents, whose ability was 0.114 g CO_(2) per gram of absorbent under 25 ℃ and 100 kPa. In addition, the absorbent retained stable absorbability of CO_(2) after 6 cycles.The absorbing capacity of the absorbent formed by the coupling of vanillin and acrylamide to CO_(2) was much greater than their own(i.e. 0 g CO_(2) ·g^(-1)vanillin, 0.01 g CO_(2) ·g^(-1) acrylamide, respectively).Detailed information revealed the multi-site synergistic absorption mechanism, in which CO_(2) has C and O double interactions with the amide group of the absorbent, and single interaction with the hydroxyl oxygen on the benzene ring of the absorbent. The absorption capacity of modified lignin for CO_(2) is as high as 0.12 g CO_(2) per gram of absorbent, which is comparable with that of model compound vanillin.This work not only provides a new idea for the design of bio-absorbents for CO_(2) capture, but explores the application potential of lignin-based materials.
基金the National Program for Support of Top-notch Young Professionals(No.0106514050)the National NSFC(Nos.82273811 and 82104043)+3 种基金the National Key R&D Program of China(No.2021YFA0910500)the National NSF for Distinguished Young Scholars(No.81725021)the Innovative Research Groups of the National NSFC(No.81721005)the Academic Frontier Youth Team of HUST(No.2017QYTD19).
文摘Three new amide derivatives(alteralkaloids A-C,1-3)and three known alkaloids(4-6)were afforded after phytochemical investigation of fungus Alternaria brassicicola.The structures of these compounds were confirmed by NMR spectroscopic and HRESIMS data.Furthermore,the absolute configuration of 1 was determined using the single-crystal X-ray diffraction analysis.Compounds 1-3 belong to a class of amide derivatives that have not been found in nature before,sharing the same characteristic signals of the butyl moiety and amide group.These isolated compounds mentioned above were tested for the cytotoxic activity.
文摘We review the use of nuclear magnetic resonance(NMR)spectroscopy to assess the exchange of amide protons for deuterons(HDX)in efforts to understand how high concentration of cosolutes,especially macromolecules,affect the equilibrium thermodynamics of protein stability.HDX NMR is the only method that can routinely provide such data at the level of individual amino acids.We begin by discussing the properties of the protein systems required to yield equilibrium thermodynamic data and then review publications using osmolytes,sugars,denaturants,synthetic polymers,proteins,cytoplasm and in cells.
基金financially supported by National Natural Science Foundation of China(22072051,22122202,21972051).
文摘The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals.The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO_(2) reduction via introducing N sources is an effective strategy to expand the product scope,since chemicals con-taining C–N bonds(e.g.amides and amines)are important reactants/products for medicine,agriculture and in-dustry.This article focuses on the research progress of C–N coupling from CO_(2) and inorganic nitrogenous species in aqueous solution.Firstly,the reaction pathways related to the reaction intermediates for urea,formamide,acetamide,methylamine and ethylamine are highlighted.Then,the electrocatalytic performance of different catalysts for these several N-containing products are summarized and classified.Finally,the challenges and op-portunities are analyzed,aiming to provide general insights into future research directions for electrocatalytic C–N coupling.
文摘Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.
文摘Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of Weinreb amide; N hydroxysuccinimide activated ester was used in peptide synthesis; and Boc as N protecting group of amino acid. Results Boc Asp(OBzl) N(OMe)Me (3), Boc β Ala Asp(OBzl) N(OMe)Me (5), and Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) were synthesized successfully. Conclusion An useful precursor of tripeptide aspartyl aldehydes was synthesized.
基金This work was supported by the National Natural Science Foundation of China (No.91127042, No.21103158, No.21273211, No.21473171), the National Key Basic Research Special Foundation (No.2013CB834602 and No.2010CB923300), the Fundamental Research Funds for the Central Universities (No.7215623603), and the Hua-shan Mountain Scholar Program. We also thank Doctor Kang-zhen Tian and Professor Shu-ji Ye for the measurement of IR spectra of aqueous lysozyme.
文摘The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303031)Strategic Emerging Industries Key Technology and Major Science and Technology Achievement Transformation in Hunan Province(2014GK1040)~~
文摘The widespread use of chemical herbicides especially amide herbicides has promoted the innovation of chemical weeding in farmland, but amide herbicides have brought invisible chemical injuries to crops in addition to weeding. Herbi-cidesafeners should be applied at the same time with herbicides to ensure herbi- cides will not injure crops while controlling weeds. The research and application of safeners is of great significance to resolving or alleviating the negative effects of herbicides on crop growth. The overview, mechanism, applied research progress and existing problems of amide herbicides and their safenars are summarized.
文摘[Objective] This study aimed to analyze the deprotection of acetyl group on amino group. [Method] A simple, convenient one-pot amino protection group of amide removed by thionyl chloride and pyridine via efficient chlorination and hydroly- sis with 1, 2-dichloroethane as solvent at ambient temperature has been developed. [Result] Pyridine is crucial to the reaction; the best solvent is 1, 2-dichloroethane, and the most suitable reaction temperature is the ambient temperature; in addition, the yield is the highest as the molar ratio of pyridine to N-(4-bromophenyl) ac- etamide is 1:1. [Conclusion] The significant features of this protocol include short re- action time, cleaner reaction profiles, under mild reaction conditions and easy purifi- cation, and simple workup that precludes the use of toxic solvents.
文摘Natural bioactive compounds from plants are of great importance in modern therapeutics,which are used to prepare antibiotics, growth supplements or some other therapeutics. Ltheanine is such a bioactive amide amino acid presented in different plants and fungi,especially in tea. Theanine has influential effects on lifestyle associated diseases, such as diabetes, cardiovascular disorders, hypertension, stress relief, tumor suppression,menstruation and liver injury. This amino acid can maintain normal sleep and improve memory function and nullify effect of the neurotoxins. The rate of bioavailability and its medium of ingestion in the body is one of the great concerns for its additional antioxidant properties. Pharmacokinetics of the bioactive compound and its mode of action are described herewith. The biosynthesis and industrial synthesis are also reviewed to promote accelerated production of this bioactive compound in the pharmaceutical industries.