Carbon dioxide (CO2) adsorption on a standard metal-organic framework MIL-101 and a pentaethylenehexamine modified MIL-101 (PEHA- MIL-101) are investigated and compared in this study. The adsorbent samples were ch...Carbon dioxide (CO2) adsorption on a standard metal-organic framework MIL-101 and a pentaethylenehexamine modified MIL-101 (PEHA- MIL-101) are investigated and compared in this study. The adsorbent samples were characterized by XRD, FT-IR and nitrogen adsorption- desorption isotherms analysis. CO2 adsorption capacity was measured by a volumetric method. MIL-101 and PEHA-MIL-101 exhibited CO2 adsorption capacities of 0.85 and 1.3 mmO1CO2/gadsorbent at 10 bar and 298 K, respectively. It is observed that CO2 adsorption capacity was fairly improved about 50% after amine modification.展开更多
A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of ...A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of diethylenediamine (DETA), and poly-amine groups of polyethylenimine (PEI) to the network gave rise to task-specific modification of the microenvironments to make them more suitable for CO2 capture. As a result, significant boost of CO2 adsorption capacity of 4.5 mmol/g (for FC-POP-CH2DETA, 273 K, 1 bar) and the CO2/N2 selectivity of 736.1 (for FC- POP-CH2PEI) were observed after the post-synthesis amine modifications. Furthermore, these materials can be regener- ated in elevated temperature under vacuum without apparent loss of CO2 adsorption capacity.展开更多
Konjac glucomannan (KGM) was aminated by 2-chloroethyl-amine (CEA) as reagent so as to study the influence of concentration of CEA (based on the amount of KGM), concentration of NaOH, reaction time and temperatu...Konjac glucomannan (KGM) was aminated by 2-chloroethyl-amine (CEA) as reagent so as to study the influence of concentration of CEA (based on the amount of KGM), concentration of NaOH, reaction time and temperature on the extent of amination. And the molecular simulation technology was adopted to analyze the conformation stability of aminate (AKGM). The results indicate that when the amount of CEA is higher, the extent of amination is higher. The optimum concentration of NaOH, reaction time and temperature are 10% NaOH, 70 ℃ and 45 rain, respectively. IR shows KGM is successfully aminated. The conformation of AKGM is in a random clew-like shape.展开更多
Carbon dioxide (CO2) adsorption on a standard metal-organic framework Mg2(dobdc) (Mg/DOBDC or Mg-MOF-74) and a tetraethylenepentamine (TEPA) modified Mgz(dobdc) (TEPA-Mg/DOBDC) were investigated and compar...Carbon dioxide (CO2) adsorption on a standard metal-organic framework Mg2(dobdc) (Mg/DOBDC or Mg-MOF-74) and a tetraethylenepentamine (TEPA) modified Mgz(dobdc) (TEPA-Mg/DOBDC) were investigated and compared. The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. CO2 adsorption capacity was measured by dynamic adsorption experiments with N2-CO2 mixed gases at 60℃. Results showed that the CO2 adsorption capacity of Mg/DOBDC was significantly improved after amine modification, with an increase from 2.67 to 6.06 mmol CO2/g adsorbent. Moreover, CO2 adsorption on the TEPA-Mg/DOBDC adsorbent was promoted by water vapor, and the adsorption capacity was enhanced to 8.31 mmol CO2/g absorbent. The adsorption capacity of the TEPA-Mg/DOBDC adsorbent dropped only 3% after 5 consecutive adsorption]desorption cycles. Therefore, this kind of adsorbent can be considered as a promising material for the capture of CO2 from flue gas.展开更多
文摘Carbon dioxide (CO2) adsorption on a standard metal-organic framework MIL-101 and a pentaethylenehexamine modified MIL-101 (PEHA- MIL-101) are investigated and compared in this study. The adsorbent samples were characterized by XRD, FT-IR and nitrogen adsorption- desorption isotherms analysis. CO2 adsorption capacity was measured by a volumetric method. MIL-101 and PEHA-MIL-101 exhibited CO2 adsorption capacities of 0.85 and 1.3 mmO1CO2/gadsorbent at 10 bar and 298 K, respectively. It is observed that CO2 adsorption capacity was fairly improved about 50% after amine modification.
文摘A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of diethylenediamine (DETA), and poly-amine groups of polyethylenimine (PEI) to the network gave rise to task-specific modification of the microenvironments to make them more suitable for CO2 capture. As a result, significant boost of CO2 adsorption capacity of 4.5 mmol/g (for FC-POP-CH2DETA, 273 K, 1 bar) and the CO2/N2 selectivity of 736.1 (for FC- POP-CH2PEI) were observed after the post-synthesis amine modifications. Furthermore, these materials can be regener- ated in elevated temperature under vacuum without apparent loss of CO2 adsorption capacity.
基金Supported by Foundation of Minnan Normal University,the Funding(type A,No.JA11167)from the Fujian Education DepartmentNational Natural Science Foundation of China(31071518 and 31271837)+2 种基金Joint Specialized Research Fund for the Doctoral Program of Higher Education,MOE(20113515110010)Science and Technology Planning Project of technological department(2012GA7200022)Natural Science Foundation of Fujian Province(2011J01285)
文摘Konjac glucomannan (KGM) was aminated by 2-chloroethyl-amine (CEA) as reagent so as to study the influence of concentration of CEA (based on the amount of KGM), concentration of NaOH, reaction time and temperature on the extent of amination. And the molecular simulation technology was adopted to analyze the conformation stability of aminate (AKGM). The results indicate that when the amount of CEA is higher, the extent of amination is higher. The optimum concentration of NaOH, reaction time and temperature are 10% NaOH, 70 ℃ and 45 rain, respectively. IR shows KGM is successfully aminated. The conformation of AKGM is in a random clew-like shape.
文摘Carbon dioxide (CO2) adsorption on a standard metal-organic framework Mg2(dobdc) (Mg/DOBDC or Mg-MOF-74) and a tetraethylenepentamine (TEPA) modified Mgz(dobdc) (TEPA-Mg/DOBDC) were investigated and compared. The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. CO2 adsorption capacity was measured by dynamic adsorption experiments with N2-CO2 mixed gases at 60℃. Results showed that the CO2 adsorption capacity of Mg/DOBDC was significantly improved after amine modification, with an increase from 2.67 to 6.06 mmol CO2/g adsorbent. Moreover, CO2 adsorption on the TEPA-Mg/DOBDC adsorbent was promoted by water vapor, and the adsorption capacity was enhanced to 8.31 mmol CO2/g absorbent. The adsorption capacity of the TEPA-Mg/DOBDC adsorbent dropped only 3% after 5 consecutive adsorption]desorption cycles. Therefore, this kind of adsorbent can be considered as a promising material for the capture of CO2 from flue gas.