Herein,we present a method for the homogeneous hydrogenation of nitroarenes to produce anilines using low catalyst loading(1 mo%)of copper N-heterocyclic carbene complexes as the catalyst and ammonia borane as the sou...Herein,we present a method for the homogeneous hydrogenation of nitroarenes to produce anilines using low catalyst loading(1 mo%)of copper N-heterocyclic carbene complexes as the catalyst and ammonia borane as the source of hydrogen.A wide range of nitroarenes,featuring diverse functional groups,were selectively transformed into their corresponding primary aromatic amines with high yields.This process can be readily scaled up and exhibits compatibility with various sensitive functional groups,including halogen,trifluoromethyl,aminomethyl,alkenyl,cyano,ester,amide,and hydroxyl.Notably,this catalytic methodology finds application in the synthesis of essential drug compounds.Mechanistic investigations suggest that the in-situ-generated Cu-H species may serve as active intermediates,with reduction pathways involving species such as azobenzene,1,2-diphenylhydrazine,nitrosobenzene,and N-phenylhydroxylamine.展开更多
以三甲胺硼烷为反应底物,通过两步法,合成了以不同烃基侧链咪唑硼烷为阳离子,二氰胺根和硝基氰胺根为阴离子的系列离子液体。采用1H和13C核磁、红外及高分辨质谱等表征方法,确认了所得离子液体的结构和组成,并测定计算了其性质。结果表...以三甲胺硼烷为反应底物,通过两步法,合成了以不同烃基侧链咪唑硼烷为阳离子,二氰胺根和硝基氰胺根为阴离子的系列离子液体。采用1H和13C核磁、红外及高分辨质谱等表征方法,确认了所得离子液体的结构和组成,并测定计算了其性质。结果表明:所得离子液体的分解温度均高于150℃,密度为1.04~1.27 g·cm-3,比冲为173.8~202.1 s。随着咪唑阳离子烃基侧链的增长,相应离子液体的密度减小,生成焓增大。二氰胺类离子液体同相应的硝基氰胺类离子液体相比,具有更短的点火延迟时间。其中,双烯丙基咪唑硼烷二氰胺离子液体具有良好的综合性能(粘度69 m Pa·s,分解温度180℃,生成焓753.6 k J·mol-1,点火延迟时间18 ms,比冲176.7 s),有望作为一种绿色燃料应用于双组元液体自燃推进剂。展开更多
The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized, and the selection of the method of chemical reduction from salt solutions h...The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized, and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable. The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy, using the effect of boranes with various structures, have been selected.展开更多
Ge-based selenides have attracted extensive attention as promising candidates for future optoelectronic applications.Despite great progress has been achieved,the controlled synthesis of GeSe2and GeSe nanostructures an...Ge-based selenides have attracted extensive attention as promising candidates for future optoelectronic applications.Despite great progress has been achieved,the controlled synthesis of GeSe2and GeSe nanostructures and understanding the relative growth mechanisms of them are still lacking.Herein,monodispersed GeSe_(2) nanoflowers with a diameter of~4μm and highly uniform GeSe nanoparticles with a lateral size of~100 nm are presented by using a colloidal synthetic method.It is found that borane tert-butylamine complex(TBAB)plays an important role in determining the Ge-Se crystal phases due to its moderately reducibility.Furthermore,the coexistence of GeSe_(2) and GeSe phases can also be acquired by precisely controlling the amount of TBAB.In brief,this work provides both new insights of the phase control of Gebased selenides by liquid-phase method and a practical means of producing well-controlled germanium selenide nanostructures.展开更多
基金financial support from the National Natural Science Foundation of China(22061041)Key Project of Science&Technology of Shaanxi Province(2023-YBGY-430)+5 种基金Project of Science&Technology Bureau of Yulin City(CXY-2022-185)Doctoral Research Foundation of Yan'an University(YDBK2019-60)the Training Program of Innovation and Entrepreneurship for Undergraduates of Yan'an University(D2022077)Research Program of Yan'an University(YDY2020-61)the Youth Innovation Team Project of Shaanxi Provincial Education Department(No.23JP193)National Science Foundation of Shaanxi Province(S2023-JC-QN-0079).
文摘Herein,we present a method for the homogeneous hydrogenation of nitroarenes to produce anilines using low catalyst loading(1 mo%)of copper N-heterocyclic carbene complexes as the catalyst and ammonia borane as the source of hydrogen.A wide range of nitroarenes,featuring diverse functional groups,were selectively transformed into their corresponding primary aromatic amines with high yields.This process can be readily scaled up and exhibits compatibility with various sensitive functional groups,including halogen,trifluoromethyl,aminomethyl,alkenyl,cyano,ester,amide,and hydroxyl.Notably,this catalytic methodology finds application in the synthesis of essential drug compounds.Mechanistic investigations suggest that the in-situ-generated Cu-H species may serve as active intermediates,with reduction pathways involving species such as azobenzene,1,2-diphenylhydrazine,nitrosobenzene,and N-phenylhydroxylamine.
文摘以三甲胺硼烷为反应底物,通过两步法,合成了以不同烃基侧链咪唑硼烷为阳离子,二氰胺根和硝基氰胺根为阴离子的系列离子液体。采用1H和13C核磁、红外及高分辨质谱等表征方法,确认了所得离子液体的结构和组成,并测定计算了其性质。结果表明:所得离子液体的分解温度均高于150℃,密度为1.04~1.27 g·cm-3,比冲为173.8~202.1 s。随着咪唑阳离子烃基侧链的增长,相应离子液体的密度减小,生成焓增大。二氰胺类离子液体同相应的硝基氰胺类离子液体相比,具有更短的点火延迟时间。其中,双烯丙基咪唑硼烷二氰胺离子液体具有良好的综合性能(粘度69 m Pa·s,分解温度180℃,生成焓753.6 k J·mol-1,点火延迟时间18 ms,比冲176.7 s),有望作为一种绿色燃料应用于双组元液体自燃推进剂。
文摘The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized, and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable. The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy, using the effect of boranes with various structures, have been selected.
基金supported by the National Natural Science Foundation of China(Nos.51971122 and 12174237)Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2021Y440)。
文摘Ge-based selenides have attracted extensive attention as promising candidates for future optoelectronic applications.Despite great progress has been achieved,the controlled synthesis of GeSe2and GeSe nanostructures and understanding the relative growth mechanisms of them are still lacking.Herein,monodispersed GeSe_(2) nanoflowers with a diameter of~4μm and highly uniform GeSe nanoparticles with a lateral size of~100 nm are presented by using a colloidal synthetic method.It is found that borane tert-butylamine complex(TBAB)plays an important role in determining the Ge-Se crystal phases due to its moderately reducibility.Furthermore,the coexistence of GeSe_(2) and GeSe phases can also be acquired by precisely controlling the amount of TBAB.In brief,this work provides both new insights of the phase control of Gebased selenides by liquid-phase method and a practical means of producing well-controlled germanium selenide nanostructures.