The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The s...The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The statically saturated adsorption capacity is 181 mg/(g resin). Cu(Ⅱ) adsorbed on APAR can be eluted by 1 0-3 0 mol/L HCl. The rate constant is k 298 =5 58×10 -5 s -1 . The adsorption of Cu(Ⅱ) on APAR follows the Freundlich isotherm. The Δ H of the adsorption is 3 91 kJ/mol. The apparent activation energy is E a=21 4 kJ/mol. The coordination molar ratio of APAR to Cu(Ⅱ) is 1/1. It is shown that the nitrogen and the oxygen atoms in the functional group of APAR coordinate to Cu(Ⅱ).展开更多
The sorption behavior of amino methylene phosphonic acid resin (APAR) for In (Ⅲ ) was investigated . Experimental results show that In ( Ⅲ ) adsorbed on APAR can be elated with 2mol · L -1 HCl. The apparent rat...The sorption behavior of amino methylene phosphonic acid resin (APAR) for In (Ⅲ ) was investigated . Experimental results show that In ( Ⅲ ) adsorbed on APAR can be elated with 2mol · L -1 HCl. The apparent rate constant is k29 = 1.50 × 10-5s-1. The sorption behavior of APAR for In ( Ⅲ ) obeys the Freundlich isotherm. The themodynamic parameters of sorption, enthalpy change ()H, free energy change ()G and entropy change ()S of sorption (APAR) for In ( Ⅲ ) are 24.1 kJ·mol-1, -35. 1kJ· mol-1 and 200J· mol-1·K-1 respectively. The coordination molar ratio of the functional group of APAR to In( Ⅲ ) is 2:1. The sorption mechanism of APAR for In( Ⅲ ) was examined by IR spectrometry.展开更多
The adsorption behavior and mechanism of a novel chelate resin, amino methylene phosphonic acid resin (APAR) for Ho(Ⅲ) were investigated. The statically saturated adsorption capacity is 258 mg·g^(-1) resin at 29...The adsorption behavior and mechanism of a novel chelate resin, amino methylene phosphonic acid resin (APAR) for Ho(Ⅲ) were investigated. The statically saturated adsorption capacity is 258 mg·g^(-1) resin at 298 K in HAc-NaAc medium. The Ho(Ⅲ) adsorbed on APAR can be repeatedly eluted by 3.0 mol·L^(-1) HCl and the elution percentage is as high as 95.8%. The resin can be regenerated and reused without apparent decrease in adsorption capacity. The apparent adsorption rate constant is k_(298)=1.14×10^(-5) s^(-1). The adsorption behavior of APAR for Ho(Ⅲ) obeys the Freundlich isotherm. The thermodynamic adsorption parameter, enthalpy change ΔH of APAR for Ho(Ⅲ) is 11.4 kJ·mol^(-1). The apparent activation energy is E_a=15.8 kJ·mol^(-1). The molar coordination ratio of the functional group of APAR to Ho(Ⅲ) is about 2∶1. The adsorption mechanism of APAR for Ho(Ⅲ) was examined by using chemical method and IR spectrometry.展开更多
Sm(III) was quantitatively adsorbed by amino methylene phosphonic acid resin (APAR) in the medium of pH=5.0. The statically saturated sorption capacity is 251mg/g·resin. Sm(III) adsorbed on APAR can be reductivel...Sm(III) was quantitatively adsorbed by amino methylene phosphonic acid resin (APAR) in the medium of pH=5.0. The statically saturated sorption capacity is 251mg/g·resin. Sm(III) adsorbed on APAR can be reductively eluted by 2.0mol/L HCl. The sorption rate constant is k298= 1.35×10-5s-1. The sorption behavior of APAR for Sm(III) obeys the Freundlich isotherm. The enthalpy change △H of sorption is 24.9kJ/mol. The apparent activation energy is Ea=11.7kJ/mol. The sorption mechanism shows that the nitrogen and oxygen atoms of the functional group of APAR coordinated with Sm(III) to form coordination bond.展开更多
基金Supported by Zhejiang Provincial Natural Science Foundation of China( No.2 0 0 0 72 )
文摘The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The statically saturated adsorption capacity is 181 mg/(g resin). Cu(Ⅱ) adsorbed on APAR can be eluted by 1 0-3 0 mol/L HCl. The rate constant is k 298 =5 58×10 -5 s -1 . The adsorption of Cu(Ⅱ) on APAR follows the Freundlich isotherm. The Δ H of the adsorption is 3 91 kJ/mol. The apparent activation energy is E a=21 4 kJ/mol. The coordination molar ratio of APAR to Cu(Ⅱ) is 1/1. It is shown that the nitrogen and the oxygen atoms in the functional group of APAR coordinate to Cu(Ⅱ).
基金This project was supported by Foundation of Zhejiang Provincial Education Bureau(No.20010677) and Lishui Science and Technology Bureau(No.2001012)
文摘The sorption behavior of amino methylene phosphonic acid resin (APAR) for In (Ⅲ ) was investigated . Experimental results show that In ( Ⅲ ) adsorbed on APAR can be elated with 2mol · L -1 HCl. The apparent rate constant is k29 = 1.50 × 10-5s-1. The sorption behavior of APAR for In ( Ⅲ ) obeys the Freundlich isotherm. The themodynamic parameters of sorption, enthalpy change ()H, free energy change ()G and entropy change ()S of sorption (APAR) for In ( Ⅲ ) are 24.1 kJ·mol-1, -35. 1kJ· mol-1 and 200J· mol-1·K-1 respectively. The coordination molar ratio of the functional group of APAR to In( Ⅲ ) is 2:1. The sorption mechanism of APAR for In( Ⅲ ) was examined by IR spectrometry.
文摘The adsorption behavior and mechanism of a novel chelate resin, amino methylene phosphonic acid resin (APAR) for Ho(Ⅲ) were investigated. The statically saturated adsorption capacity is 258 mg·g^(-1) resin at 298 K in HAc-NaAc medium. The Ho(Ⅲ) adsorbed on APAR can be repeatedly eluted by 3.0 mol·L^(-1) HCl and the elution percentage is as high as 95.8%. The resin can be regenerated and reused without apparent decrease in adsorption capacity. The apparent adsorption rate constant is k_(298)=1.14×10^(-5) s^(-1). The adsorption behavior of APAR for Ho(Ⅲ) obeys the Freundlich isotherm. The thermodynamic adsorption parameter, enthalpy change ΔH of APAR for Ho(Ⅲ) is 11.4 kJ·mol^(-1). The apparent activation energy is E_a=15.8 kJ·mol^(-1). The molar coordination ratio of the functional group of APAR to Ho(Ⅲ) is about 2∶1. The adsorption mechanism of APAR for Ho(Ⅲ) was examined by using chemical method and IR spectrometry.
基金Foundations of Zhejiang Provincial Education Ministry (No.20010677)
文摘Sm(III) was quantitatively adsorbed by amino methylene phosphonic acid resin (APAR) in the medium of pH=5.0. The statically saturated sorption capacity is 251mg/g·resin. Sm(III) adsorbed on APAR can be reductively eluted by 2.0mol/L HCl. The sorption rate constant is k298= 1.35×10-5s-1. The sorption behavior of APAR for Sm(III) obeys the Freundlich isotherm. The enthalpy change △H of sorption is 24.9kJ/mol. The apparent activation energy is Ea=11.7kJ/mol. The sorption mechanism shows that the nitrogen and oxygen atoms of the functional group of APAR coordinated with Sm(III) to form coordination bond.