Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,whic...Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.展开更多
Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the p...Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.展开更多
Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ...Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.展开更多
This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profile...This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profiles of NH3-N and p-toluidine were traced under the concentration of sucrose in the influent varied from 0 to 500 mg/L, aerated airflow varied from 0.6 to 1.2 L/min and temperature varied from 10 to 25℃, respectively. The results showed that the concentration of NH3-N turned from increase to decrease when p-toluidine was nearly completely biodegraded, so the profile of NH3-N could clearly indicate the endpoint of p-toluidine biodegradation. And the profile of NH3-N was not influenced by the sucrose in the influent, aerated airflow and temperature. It is showed that using ammonia nitrogen as monitoring and control parameter is feasible and reliable and has promising application in amine wastewater treatment by SBR.展开更多
Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to...Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years.展开更多
Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practice...Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system.展开更多
Micrometeorological and microplot experiments were conducted in the field of freshly harvested green cane in Queensland, Australia. Results showed that high ammonia loss of fertilizer N could occur under relatively dr...Micrometeorological and microplot experiments were conducted in the field of freshly harvested green cane in Queensland, Australia. Results showed that high ammonia loss of fertilizer N could occur under relatively dry conditions when urea or commercial product of mixture of urea and muriate of potash were applied to the surface of sugarcane trash. The moisture content in the trash and the pH of fertilizer were two important factors controlling the processes of urea hydrolysis and ammonia volatilization. Most of the N in the soil was transformed to the nitrate+ nitrite from after 70 days of fertilizer application. No significant leaching was found. Urea-free N fertilizers had higher N recoveries compared to urea-containing fertilizers. .展开更多
The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia syn...The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia synthesis.While the process is thermodynamically feasible at ambient temperature and pressure,challenges such as the competing hydrogen evolution reaction,low nitrogen solubility in electrolytes,and the activation of inert dinitrogen(N_(2))gas adversely affect the performance of ammonia production.These hurdles result in low Faradaic efficiency and low ammonia production rate,which pose obstacles to the commercialisation of the process.Researchers have been actively designing and proposing various electrocatalysts to address these issues,but challenges still need to be resolved.A key strategy in electrocatalyst design lies in understanding the underlying mechanisms that govern the success or failure of the electrocatalyst in driving the electrochemical reaction.Through mechanistic studies,we gain valuable insights into the factors affecting the reaction,enabling us to propose optimised designs to overcome the barriers.This review aims to provide a comprehensive understanding of the various mechanisms involved in eNRR on the electrocatalyst surface.It delves into the various mechanisms such as dissociative,associative,Mars-van Krevelen,lithium-mediated nitrogen reduction and surface hydrogenation mechanisms of nitrogen reduction.By unravelling the intricacies of eNRR mechanisms and exploring promising avenues,we can pave the way for more efficient and commercially viable ammonia synthesis through this sustainable electrochemical process by designing an efficient electrocatalyst.展开更多
Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transport...Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.展开更多
AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and ph...AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and photoelectron-hole separation of the composite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-vis DRS)and photoluminescence spectroscopy(PL).The construction of AgBr and C_(3)N_(5)heterojunction could broaden the spectral response range,realize the efficient separation of photoelectrons and holes,and thus improve the photocatalytic performance.The photocatalytic performance of the composite material was studied by simulating inorganic ammonia nitrogen wastewater with NH_(4)Cl solution.The dosage of the composite material was 0.10 g,the initial mass concentration of NH_(4)Cl solution was 100 mg/L,and the initial pH was 10.0.The removal rate of ammonia nitrogen by the composite material reached 90.27%after 60 min of simulated visible light irradiation.After 5 cycles,the removal rate of ammonia nitrogen only declined by 0.12%.The composite material showed good photocatalytic performance and stability.The Z-scheme mechanism effectively retained the reduction and oxidation activities of photoelectrons and holes,which could change O_(2)and H2O to active groups such as superoxide radicals(·O_(2)-)and hydroxyl radicals(·OH),respectively,achieving efficient removal of inorganic ammonia nitrogen.展开更多
The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and tra...The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank.展开更多
To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the s...To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction.展开更多
Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe ...Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe reaction conditions,leads to substantial energy consumption and environmental pollution.It is thus imperative for NH_(3) synthesis methods to be investigated under more favorable conditions.Synthesis of ammonia by electrocatalysis can effectively reduce the environmental damage and other urgent problems,which is a promising solution.Metal-nitrogen series batteries(M-N batteries),such as metal-nitrogen gas batteries,metal-nitrogen oxide batteries and metal-oxynitride batteries have been regarded recently as an exemplar of concurrent NH_(3) synthesis and energy production.Nonetheless,the large-scale application of these batteries is still limited by numerous challenges are currently existing in building high-efficiency M-N batteries,including poor Faradic efficiency and low NH_(3) yield.Therefore,a comprehensive overview of M-N batteries is offered,specifically focusing on advanced strategies for designing highly efficient cathode catalysts in anticipation of future developments.The metal anodes,cathodic electro-reduction reactions,and design principles are encompassed in the discussion,offering detailed insights to enhance understanding.Mechanisms,feasibility analyses,technoeconomic assessments,device combinations,and comparative evaluations are delved into in the review,contributing to a thorough comprehension of diverse systems and their application potential.Perspectives and opportunities for future research directions are also delineated.展开更多
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i...Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.展开更多
High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro...High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.展开更多
A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow ...A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.展开更多
Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the i...Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds(NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR 2023 MD 059)the National Natural Science Foundation of China(No.41876135)。
文摘Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.
基金Supported by the National Natural Science Foundation of China(No.30972260)~~
文摘Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.
基金Supported by the National Natural Science Foundation of China(21506078).
文摘Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.
文摘This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profiles of NH3-N and p-toluidine were traced under the concentration of sucrose in the influent varied from 0 to 500 mg/L, aerated airflow varied from 0.6 to 1.2 L/min and temperature varied from 10 to 25℃, respectively. The results showed that the concentration of NH3-N turned from increase to decrease when p-toluidine was nearly completely biodegraded, so the profile of NH3-N could clearly indicate the endpoint of p-toluidine biodegradation. And the profile of NH3-N was not influenced by the sucrose in the influent, aerated airflow and temperature. It is showed that using ammonia nitrogen as monitoring and control parameter is feasible and reliable and has promising application in amine wastewater treatment by SBR.
基金the National Natural Science Foundation of China(40801097)the Natural Science Foundation of Fujian Province,China(2012J01107)
文摘Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years.
基金supported by the National Key Research and Development Program of China(2016YFD0200301)the open fund of Key Laboratory of Non-point Source Pollution Control,Ministry of Agriculture,China(20130104)the Key Technologies R&D Program of China during the 12th Five-year Plan period(2012BAD14B04)
文摘Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system.
文摘Micrometeorological and microplot experiments were conducted in the field of freshly harvested green cane in Queensland, Australia. Results showed that high ammonia loss of fertilizer N could occur under relatively dry conditions when urea or commercial product of mixture of urea and muriate of potash were applied to the surface of sugarcane trash. The moisture content in the trash and the pH of fertilizer were two important factors controlling the processes of urea hydrolysis and ammonia volatilization. Most of the N in the soil was transformed to the nitrate+ nitrite from after 70 days of fertilizer application. No significant leaching was found. Urea-free N fertilizers had higher N recoveries compared to urea-containing fertilizers. .
基金the Science and Engineering Research Board(SERB),Government of India for funding this work(Sanction No.EEQ/2021/001116)。
文摘The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia synthesis.While the process is thermodynamically feasible at ambient temperature and pressure,challenges such as the competing hydrogen evolution reaction,low nitrogen solubility in electrolytes,and the activation of inert dinitrogen(N_(2))gas adversely affect the performance of ammonia production.These hurdles result in low Faradaic efficiency and low ammonia production rate,which pose obstacles to the commercialisation of the process.Researchers have been actively designing and proposing various electrocatalysts to address these issues,but challenges still need to be resolved.A key strategy in electrocatalyst design lies in understanding the underlying mechanisms that govern the success or failure of the electrocatalyst in driving the electrochemical reaction.Through mechanistic studies,we gain valuable insights into the factors affecting the reaction,enabling us to propose optimised designs to overcome the barriers.This review aims to provide a comprehensive understanding of the various mechanisms involved in eNRR on the electrocatalyst surface.It delves into the various mechanisms such as dissociative,associative,Mars-van Krevelen,lithium-mediated nitrogen reduction and surface hydrogenation mechanisms of nitrogen reduction.By unravelling the intricacies of eNRR mechanisms and exploring promising avenues,we can pave the way for more efficient and commercially viable ammonia synthesis through this sustainable electrochemical process by designing an efficient electrocatalyst.
基金the financial support provided by the Canada Research Chair program and the Natural Science and Engineering Research Council of Canada (NSERC)
文摘Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.
文摘AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and photoelectron-hole separation of the composite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-vis DRS)and photoluminescence spectroscopy(PL).The construction of AgBr and C_(3)N_(5)heterojunction could broaden the spectral response range,realize the efficient separation of photoelectrons and holes,and thus improve the photocatalytic performance.The photocatalytic performance of the composite material was studied by simulating inorganic ammonia nitrogen wastewater with NH_(4)Cl solution.The dosage of the composite material was 0.10 g,the initial mass concentration of NH_(4)Cl solution was 100 mg/L,and the initial pH was 10.0.The removal rate of ammonia nitrogen by the composite material reached 90.27%after 60 min of simulated visible light irradiation.After 5 cycles,the removal rate of ammonia nitrogen only declined by 0.12%.The composite material showed good photocatalytic performance and stability.The Z-scheme mechanism effectively retained the reduction and oxidation activities of photoelectrons and holes,which could change O_(2)and H2O to active groups such as superoxide radicals(·O_(2)-)and hydroxyl radicals(·OH),respectively,achieving efficient removal of inorganic ammonia nitrogen.
基金supported by Special Scientific Research Expenditure for Public Charity Industry of Ministry of Water Resources(No.201501008)Institute of Resources and Environment of North China University of Water Resources and Electric Power
文摘The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank.
基金supported by the National Key Research and Development Program of China(2023YFB4005700,2023YFB4005705,and 2023YFB4005702-03)the Academy-Local Cooperation Project of the Chinese Academy of Engineering(2023-DFZD-01)+4 种基金the National Natural Science Foundation of China(52207151)the Natural Science Foundation of Anhui Province(2208085QA29)the University Synergy Innovation Program of Anhui Province(GXXT-2022025)the independent project of the Energy Research Institute of Hefei Comprehensive National Science Center(Anhui Energy Laboratory22KZZ525,23KZS402,22KZS301,and 22KZS304).
文摘To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction.
基金National Natural Science Foundation of China (22179065)Tianjin Graduate Research and Innovation Project (2022BKY018)。
文摘Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe reaction conditions,leads to substantial energy consumption and environmental pollution.It is thus imperative for NH_(3) synthesis methods to be investigated under more favorable conditions.Synthesis of ammonia by electrocatalysis can effectively reduce the environmental damage and other urgent problems,which is a promising solution.Metal-nitrogen series batteries(M-N batteries),such as metal-nitrogen gas batteries,metal-nitrogen oxide batteries and metal-oxynitride batteries have been regarded recently as an exemplar of concurrent NH_(3) synthesis and energy production.Nonetheless,the large-scale application of these batteries is still limited by numerous challenges are currently existing in building high-efficiency M-N batteries,including poor Faradic efficiency and low NH_(3) yield.Therefore,a comprehensive overview of M-N batteries is offered,specifically focusing on advanced strategies for designing highly efficient cathode catalysts in anticipation of future developments.The metal anodes,cathodic electro-reduction reactions,and design principles are encompassed in the discussion,offering detailed insights to enhance understanding.Mechanisms,feasibility analyses,technoeconomic assessments,device combinations,and comparative evaluations are delved into in the review,contributing to a thorough comprehension of diverse systems and their application potential.Perspectives and opportunities for future research directions are also delineated.
基金supported by the Climate Change Response Project (NRF-2019M1A2A2065612)the Brainlink Project (NRF2022H1D3A3A01081140)+3 种基金the NRF-2021R1A4A3027878 and the No. RS-2023-00212273 funded by the Ministry of Science and ICT of Korea via National Research Foundationresearch funds from Hanhwa Solutions Chemicals (1.220029.01)UNIST (1.190013.01)supported by the Institute for Basic Science (IBS-R019-D1)。
文摘Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.
基金supported by the Special Fundof State Key Joint Laboratory of Environment Simulation and Pollution Control,China (No. 08Y03ESPCT)the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period of China(No. 2006BACl9B01)
文摘A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.
基金supported by the"Deutsche Forschungsgemeinschaft"(DFG,German Research Foundation,SU124/33–1)
文摘Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds(NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.