Rare earth gangue, which mainly consists of mixtures of light rare earths such as lanthana, ceria, neodymium oxide and praseodymium oxide, was used as the promoter of fused iron catalysts for ammonia synthesis. The re...Rare earth gangue, which mainly consists of mixtures of light rare earths such as lanthana, ceria, neodymium oxide and praseodymium oxide, was used as the promoter of fused iron catalysts for ammonia synthesis. The result showed that the activity of the catalyst promoted with rare earth gangue was comparable with those of commercial iron catalysts with high amount of cobalt. The role of rare earths was owed to their advantages for favoring the deep reduction of the main composite in catalyst, i.e., iron oxide. This fmding indicated that the use of rare earth gangue could decrease the content of cobalt or even completely replace cobalt, which was used to be regarded as unsub- stitutable promoters for high performance ammonia catalyst; therefore, the cost of fused iron catalysts would decrease significantly.展开更多
Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and th...Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.展开更多
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t...A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.展开更多
Carbon nanotubes(CNTs) with abundant surface defects are prepared by a liquid oxidation and thermal annealing method. The defective CNTs-D supported Ba–Ru/CNTs-D catalysts exhibit superior catalytic performance in am...Carbon nanotubes(CNTs) with abundant surface defects are prepared by a liquid oxidation and thermal annealing method. The defective CNTs-D supported Ba–Ru/CNTs-D catalysts exhibit superior catalytic performance in ammonia synthesis with a TOF be increased up to 0.30 s-1, which is 2.5 times of oxidized CNTs-O supported Ba–Ru/CNTs-O catalysts and 5 times of the Ba–Ru/CNTs. The characterizations by CO chemisorption, transmission electron microscope, Raman, and X-ray photoelectron spectroscopy revealed that the uniformly well dispersed Ru NPs can be stabilized on the defective sites of CNTs-D. The great improvement of the catalytic performance and stability of the Ba–Ru/CNTs-D is contributed to the strong interaction between Ru NPs and surface defect of the CNTs.展开更多
Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in d...Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).展开更多
Raman peaks at 1951 and 2165 cm^(-1) can be confirmed further by H_2/D_2 isotope exchange as H-adspecies on the doubly promoted iron catalyst for ammonia synthesis and are probably ascribed to two terminally adsorbed ...Raman peaks at 1951 and 2165 cm^(-1) can be confirmed further by H_2/D_2 isotope exchange as H-adspecies on the doubly promoted iron catalyst for ammonia synthesis and are probably ascribed to two terminally adsorbed H-species.展开更多
Nitrate pollution is of great importance in both the environmental and health contexts, necessitating the development of efficient mitigation strategies. This review provides a comprehensive analysis of the many catal...Nitrate pollution is of great importance in both the environmental and health contexts, necessitating the development of efficient mitigation strategies. This review provides a comprehensive analysis of the many catalysts employed in the electrochemical reduction of nitrate to ammonia, and presents a viable environmentally friendly approach to address the issue of nitrate pollution. Hence, the electrochemical transformation of nitrate to ammonia serves the dual purpose of addressing nitrate pollution in water bodies, and is a useful agricultural resource. This review examines a range of catalyst materials such as noble and non-noble metals, metal oxides, carbon-based materials, nitrogen-doped carbon species, metal complexes, and semiconductor photocatalysts. It evaluates catalytic efficiency, selectivity, stability, and overall process optimization. The performance of catalysts is influenced by various factors, including reaction conditions, catalyst structure, loading techniques, and electrode interfaces. Comparative analysis was performed to evaluate the catalytic activity, selectivity, Faradaic efficiency, current density, stability, and durability of the catalysts. This assessment offers significant perspectives on the structural, compositional, and electrochemical characteristics that affect the efficacy of these catalysts, thus informing future investigations and advancements in this domain. In addition to mitigating nitrate pollution, the electrochemical reduction of nitrate to ammonia is in line with sustainable agricultural methods, resource conservation, and the utilization of renewable energy resources. This study explores the factors that affect the catalytic efficiency, provides new opportunities to address nitrate pollution, and promotes the development of sustainable environmental solutions.展开更多
The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-C...The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.展开更多
Electrolysis of ammonia in alkaline electrolyte solution was applied for the production of hydrogen. Both Pt-loaded Ni foam and Pt-Ir loaded Ni foam electrodes were prepared by electrodeposition and served as anode an...Electrolysis of ammonia in alkaline electrolyte solution was applied for the production of hydrogen. Both Pt-loaded Ni foam and Pt-Ir loaded Ni foam electrodes were prepared by electrodeposition and served as anode and cathode in ammonia electrolytic cell, respectively. The electrochemical behaviors of ammonia in KOH solution were individually investigated via cyclic voltammetry on three electrodes, i.e. bare Ni foam electrode, Pt-loaded Ni foam electrode and Pt-Ir loaded Ni foam electrode. The morphology and composition of the prepared Ni foam electrode were analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD). Effects of the concentration of electrolyte solution and temperature of electrolytic cell on the electrolysis reaction were examined in order to enhance the efficiency of ammonia electrolysis. The competition of ammonia electrolysis and water electrolysis in the same alkaline solution was firstly proposed to explain the changes of cell voltage with the electrolysis proceeding. At varying current densities, different cell voltages could be obtained from galvanostatic curves.The low cell voltage of 0.58 V, which is less than the practical electrolysis voltage of water(1.6 V), can be obtained at a current density of2.5 mA/cm2. Based on some experimental parameters, such as the applied current, the resulting cell voltage and output of hydrogen gas, the power consumption per gram of H2produced can be estimated.展开更多
A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell po...A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3.展开更多
The objective of the paper is to report results on fabrication, structural, morphological and performance characteristics of novel TiO2/PS/Si, Au/TiO2/PS/Si and Au/PS/Si direct ammonia fuel cells (DAFC) using nanoporo...The objective of the paper is to report results on fabrication, structural, morphological and performance characteristics of novel TiO2/PS/Si, Au/TiO2/PS/Si and Au/PS/Si direct ammonia fuel cells (DAFC) using nanoporous silicon (PS) as proton conducting membrane (instead of traditional polymer Nafion membrane) and TiO2, Au/TiO2 or Au as catalyst layer. Porous silicon layers have been prepared by electrochemical modification of silicon substrates. Films containing titanium dioxide are more efficient catalysts for hydrogen production from ammonia solution. The Au/ TiO2/PS/Si cell exhibited the open circuit voltage 0.87 V and performance of 1.6 mW/cm2 with 50% ammonia solution as fuel at room temperature. Mechanisms of proton transport in nanoporous silicon membrane and generation of electricity in DAFC have been considered. Advantages of investigated direct ammonia fuel cells consist in simplicity of fabrication technology, which can be integrated into standard silicon micro fabrication processes and operation of cells at room temperature. The work demonstrates that the PS based fuel cells have potential for portable applications.展开更多
氨(NH_(3))作为重要的化学品和能源储存介质,需求量与日俱增.本文旨在通过电化学硝酸根还原反应(NO_(3)^(−)RR),将NO_(3)^(−)转化为NH3,不仅解决了NO_(3)^(−)引起的环境污染问题,又可以满足对NH_(3)的迫切需求.然而,NO_(3)^(−)RR涉及多...氨(NH_(3))作为重要的化学品和能源储存介质,需求量与日俱增.本文旨在通过电化学硝酸根还原反应(NO_(3)^(−)RR),将NO_(3)^(−)转化为NH3,不仅解决了NO_(3)^(−)引起的环境污染问题,又可以满足对NH_(3)的迫切需求.然而,NO_(3)^(−)RR涉及多个电子和质子转移过程,其中,NO_(2)^(−)是NO_(3)^(−)活化转化和深度还原合成NH_(3)的重要中间体.酞菁铜(CuPc)能够高效地活化转化NO_(3)^(−)为NO_(2)^(−),但在低过电位时无法有效地将NO2−还原为NH3,难以获得较高的氨法拉第效率(FENH3)和分电流密度.而氮配位的铁单原子催化剂(FeNC)则有较好的NO_(2)^(−)吸附活化特性.因此,利用双组分催化剂之间的协同作用以实现高效NO_(3)^(−)RR的活性和选择性是本文的主要研究思路.本文设计了CuPc/FeNC串联催化剂,利用CuPc和FeNC对NO_(3)^(−)和NO_(2)^(−)的吸附活化能力的差异,实现了高效的协同催化转化.X射线衍射、高角环形暗场扫描透射电镜、X射线光电子能谱及X射线吸收谱结果表明,FeNC催化剂中Fe原子均匀分布于ZIF-8热解后的基底.通过将FeNC和CuPc负载于气体扩散电极,在流动电解池中完成NO_(3)^(−)RR.CuPc/FeNC催化剂在较低电势区间中能够实现接近100%的NH3法拉第效率,同时在−0.57 V vs.RHE时达到273 mA cm–2的NH3分电流密度,并且在整个电势范围内有效地抑制了NO_(2)^(–)聚集.与单组分催化剂CuPc和FeNC对比结果表明,在−0.53 V vs.RHE时,CuPc/FeNC催化剂表现出较高的FE(NH_(3))/FE(NO_(2)^(−))比值,是CuPc催化剂的50倍;同时CuPc/FeNC催化剂上NH3分电流密度是FeNC催化剂的1.5倍.进一步研究了NO_(3)^(–)RR中的串联反应机制,其中FeNC催化剂表现出较高的NO_(2)^(–)RR活性,并且有效抑制了析氢反应.此外,CuPc/FeNC催化剂和FeNC催化剂在NO_(2)^(−)RR中表现出类似的NH3分电流密度,这表明在NO_(3)^(−)RR中,CuPc/FeNC催化剂性能的提高来源于FeNC位点能够进一步还原CuPc位点产生的NO_(2)^(–).理论计算结果表明,FeNC比CuPc表现出更强的NO_(2)^(–)吸附活化能力,说明NO_(2)^(−)在FeNC上更容易进行加氢还原.NO_(3)^(−)RR反应全路径分析结果表明,对于^(*)NO_(3)还原到*NO2过程,CuPc相对于FeNC位点具有明显降低的反应自由能,说明CuPc有利于NO_(2)^(−)的生成;而FeNC位点在后续的^(*)NO_(2)还原合成^(*)NH_(3)过程中具有更低的反应自由能,这与实验结果一致.一系列非原位和原位表征证明了CuPc催化剂在高电位下存在少量金属颗粒析出,与CuPc催化剂在高电位下NH_(3)分电流密度快速增加结果一致.综上,本工作中CuPc和FeNC催化剂之间的协同作用弥补了各自的不足,通过串联反应机制,在低过电位下有效增加了NH_(3)的法拉第效率和电流密度,实现了高效的协同催化转化,为设计和合成高效催化剂提供了新思路.展开更多
基金the National Natural Science Foundation of China (20576021)Science & Technology Priority Project of Fujian Province (2005HZ01-2)National Key Technology R&D Program of China (2007BAE08B02)
文摘Rare earth gangue, which mainly consists of mixtures of light rare earths such as lanthana, ceria, neodymium oxide and praseodymium oxide, was used as the promoter of fused iron catalysts for ammonia synthesis. The result showed that the activity of the catalyst promoted with rare earth gangue was comparable with those of commercial iron catalysts with high amount of cobalt. The role of rare earths was owed to their advantages for favoring the deep reduction of the main composite in catalyst, i.e., iron oxide. This fmding indicated that the use of rare earth gangue could decrease the content of cobalt or even completely replace cobalt, which was used to be regarded as unsub- stitutable promoters for high performance ammonia catalyst; therefore, the cost of fused iron catalysts would decrease significantly.
基金Supported by the Science &Technical Ministry of China( No.2 0 0 1BA3 2 2 C) ,the Science &Technical Department ofFujian Province( No.2 0 0 0 F0 0 2 ) and the Science &Technical Development Foundation of Fuzhou U niversity( No.XKJQD-0 10 2 )
文摘Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.
基金supported by the Natural Science Foundation of China(NSFC Grant No.20803064)the Natural Science Foundation of Zhejiang Provence(Y4090348 and LY12B03007)Qianjiang Talent Project in Zhejiang Province(2010R10039 and 2013R10056)
文摘A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.
基金The financial support from Natural Science Foundation of Zhejiang Province(LY17B030010)。
文摘Carbon nanotubes(CNTs) with abundant surface defects are prepared by a liquid oxidation and thermal annealing method. The defective CNTs-D supported Ba–Ru/CNTs-D catalysts exhibit superior catalytic performance in ammonia synthesis with a TOF be increased up to 0.30 s-1, which is 2.5 times of oxidized CNTs-O supported Ba–Ru/CNTs-O catalysts and 5 times of the Ba–Ru/CNTs. The characterizations by CO chemisorption, transmission electron microscope, Raman, and X-ray photoelectron spectroscopy revealed that the uniformly well dispersed Ru NPs can be stabilized on the defective sites of CNTs-D. The great improvement of the catalytic performance and stability of the Ba–Ru/CNTs-D is contributed to the strong interaction between Ru NPs and surface defect of the CNTs.
基金supported by the National Basic Research Program of China (No. 2011CB201404)the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO) of China
文摘Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).
基金Supported from the State Key Laboratory for Physical Chemistry of the Solid Surface of Xiamen University.
文摘Raman peaks at 1951 and 2165 cm^(-1) can be confirmed further by H_2/D_2 isotope exchange as H-adspecies on the doubly promoted iron catalyst for ammonia synthesis and are probably ascribed to two terminally adsorbed H-species.
文摘Nitrate pollution is of great importance in both the environmental and health contexts, necessitating the development of efficient mitigation strategies. This review provides a comprehensive analysis of the many catalysts employed in the electrochemical reduction of nitrate to ammonia, and presents a viable environmentally friendly approach to address the issue of nitrate pollution. Hence, the electrochemical transformation of nitrate to ammonia serves the dual purpose of addressing nitrate pollution in water bodies, and is a useful agricultural resource. This review examines a range of catalyst materials such as noble and non-noble metals, metal oxides, carbon-based materials, nitrogen-doped carbon species, metal complexes, and semiconductor photocatalysts. It evaluates catalytic efficiency, selectivity, stability, and overall process optimization. The performance of catalysts is influenced by various factors, including reaction conditions, catalyst structure, loading techniques, and electrode interfaces. Comparative analysis was performed to evaluate the catalytic activity, selectivity, Faradaic efficiency, current density, stability, and durability of the catalysts. This assessment offers significant perspectives on the structural, compositional, and electrochemical characteristics that affect the efficacy of these catalysts, thus informing future investigations and advancements in this domain. In addition to mitigating nitrate pollution, the electrochemical reduction of nitrate to ammonia is in line with sustainable agricultural methods, resource conservation, and the utilization of renewable energy resources. This study explores the factors that affect the catalytic efficiency, provides new opportunities to address nitrate pollution, and promotes the development of sustainable environmental solutions.
基金National Natural Science Foundation of China (20590360)New Century Excellent Talent Project of China (NCET-05-0783)
文摘The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.
基金supported by the National Natural Science Foundation of China(No.21103215)the Applied Basic Research Projects of Qingdao City(No.11-2-4-8-3-jch)
文摘Electrolysis of ammonia in alkaline electrolyte solution was applied for the production of hydrogen. Both Pt-loaded Ni foam and Pt-Ir loaded Ni foam electrodes were prepared by electrodeposition and served as anode and cathode in ammonia electrolytic cell, respectively. The electrochemical behaviors of ammonia in KOH solution were individually investigated via cyclic voltammetry on three electrodes, i.e. bare Ni foam electrode, Pt-loaded Ni foam electrode and Pt-Ir loaded Ni foam electrode. The morphology and composition of the prepared Ni foam electrode were analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD). Effects of the concentration of electrolyte solution and temperature of electrolytic cell on the electrolysis reaction were examined in order to enhance the efficiency of ammonia electrolysis. The competition of ammonia electrolysis and water electrolysis in the same alkaline solution was firstly proposed to explain the changes of cell voltage with the electrolysis proceeding. At varying current densities, different cell voltages could be obtained from galvanostatic curves.The low cell voltage of 0.58 V, which is less than the practical electrolysis voltage of water(1.6 V), can be obtained at a current density of2.5 mA/cm2. Based on some experimental parameters, such as the applied current, the resulting cell voltage and output of hydrogen gas, the power consumption per gram of H2produced can be estimated.
文摘A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3.
文摘The objective of the paper is to report results on fabrication, structural, morphological and performance characteristics of novel TiO2/PS/Si, Au/TiO2/PS/Si and Au/PS/Si direct ammonia fuel cells (DAFC) using nanoporous silicon (PS) as proton conducting membrane (instead of traditional polymer Nafion membrane) and TiO2, Au/TiO2 or Au as catalyst layer. Porous silicon layers have been prepared by electrochemical modification of silicon substrates. Films containing titanium dioxide are more efficient catalysts for hydrogen production from ammonia solution. The Au/ TiO2/PS/Si cell exhibited the open circuit voltage 0.87 V and performance of 1.6 mW/cm2 with 50% ammonia solution as fuel at room temperature. Mechanisms of proton transport in nanoporous silicon membrane and generation of electricity in DAFC have been considered. Advantages of investigated direct ammonia fuel cells consist in simplicity of fabrication technology, which can be integrated into standard silicon micro fabrication processes and operation of cells at room temperature. The work demonstrates that the PS based fuel cells have potential for portable applications.
文摘氨(NH_(3))作为重要的化学品和能源储存介质,需求量与日俱增.本文旨在通过电化学硝酸根还原反应(NO_(3)^(−)RR),将NO_(3)^(−)转化为NH3,不仅解决了NO_(3)^(−)引起的环境污染问题,又可以满足对NH_(3)的迫切需求.然而,NO_(3)^(−)RR涉及多个电子和质子转移过程,其中,NO_(2)^(−)是NO_(3)^(−)活化转化和深度还原合成NH_(3)的重要中间体.酞菁铜(CuPc)能够高效地活化转化NO_(3)^(−)为NO_(2)^(−),但在低过电位时无法有效地将NO2−还原为NH3,难以获得较高的氨法拉第效率(FENH3)和分电流密度.而氮配位的铁单原子催化剂(FeNC)则有较好的NO_(2)^(−)吸附活化特性.因此,利用双组分催化剂之间的协同作用以实现高效NO_(3)^(−)RR的活性和选择性是本文的主要研究思路.本文设计了CuPc/FeNC串联催化剂,利用CuPc和FeNC对NO_(3)^(−)和NO_(2)^(−)的吸附活化能力的差异,实现了高效的协同催化转化.X射线衍射、高角环形暗场扫描透射电镜、X射线光电子能谱及X射线吸收谱结果表明,FeNC催化剂中Fe原子均匀分布于ZIF-8热解后的基底.通过将FeNC和CuPc负载于气体扩散电极,在流动电解池中完成NO_(3)^(−)RR.CuPc/FeNC催化剂在较低电势区间中能够实现接近100%的NH3法拉第效率,同时在−0.57 V vs.RHE时达到273 mA cm–2的NH3分电流密度,并且在整个电势范围内有效地抑制了NO_(2)^(–)聚集.与单组分催化剂CuPc和FeNC对比结果表明,在−0.53 V vs.RHE时,CuPc/FeNC催化剂表现出较高的FE(NH_(3))/FE(NO_(2)^(−))比值,是CuPc催化剂的50倍;同时CuPc/FeNC催化剂上NH3分电流密度是FeNC催化剂的1.5倍.进一步研究了NO_(3)^(–)RR中的串联反应机制,其中FeNC催化剂表现出较高的NO_(2)^(–)RR活性,并且有效抑制了析氢反应.此外,CuPc/FeNC催化剂和FeNC催化剂在NO_(2)^(−)RR中表现出类似的NH3分电流密度,这表明在NO_(3)^(−)RR中,CuPc/FeNC催化剂性能的提高来源于FeNC位点能够进一步还原CuPc位点产生的NO_(2)^(–).理论计算结果表明,FeNC比CuPc表现出更强的NO_(2)^(–)吸附活化能力,说明NO_(2)^(−)在FeNC上更容易进行加氢还原.NO_(3)^(−)RR反应全路径分析结果表明,对于^(*)NO_(3)还原到*NO2过程,CuPc相对于FeNC位点具有明显降低的反应自由能,说明CuPc有利于NO_(2)^(−)的生成;而FeNC位点在后续的^(*)NO_(2)还原合成^(*)NH_(3)过程中具有更低的反应自由能,这与实验结果一致.一系列非原位和原位表征证明了CuPc催化剂在高电位下存在少量金属颗粒析出,与CuPc催化剂在高电位下NH_(3)分电流密度快速增加结果一致.综上,本工作中CuPc和FeNC催化剂之间的协同作用弥补了各自的不足,通过串联反应机制,在低过电位下有效增加了NH_(3)的法拉第效率和电流密度,实现了高效的协同催化转化,为设计和合成高效催化剂提供了新思路.