Selective hydrogenation of hydroxyaldehydes to polyalcohols is challenging due to the competitive hydrogenation of C=O and CAO.This study develops heterogeneous Cu catalysts for the selective synthesis of ethylene gly...Selective hydrogenation of hydroxyaldehydes to polyalcohols is challenging due to the competitive hydrogenation of C=O and CAO.This study develops heterogeneous Cu catalysts for the selective synthesis of ethylene glycol via batch liquid-phase hydrogenation of glycolaldehyde.SiO_(2)supported Cu,fabricated by ammonia evaporation,enables to catalyze the C=O bond hydrogenation with retaining the CAO bond intact,yielding higher selective hydrogenation activity with ethylene glycol selectivity up to 99.8%relative to MgO,Al_(2)O_(3),CeO_(2),and TiO_(2)supports and Cu/SiO_(2)synthesized by deposition–precipitation and impregnation.Characterizations confirm that highly efficient 20Cu/SiO_(2)-AE-623 K catalyst fabricated by ammonia evaporation is featured with larger Cu^(0)and Cu^(+)surface areas,of which the Cu^(+)species created from reducing copper phyllosilicate exhibit higher reactivity.A synergistic effect between Cu^(+)and Cu^(0)facilitates the selective adsorption/activation of glycolaldehyde on Cu^(+)sites and the dissociation of H_(2)on Cu^(0)sites,bringing a remarkable improvement in the selective hydrogenation performance.展开更多
基金supported by the National Key Research and Development Program of China (2018YFA0704502)Haihe Laboratory of Sustainable Chemical Transformations (CYZC202101)。
文摘Selective hydrogenation of hydroxyaldehydes to polyalcohols is challenging due to the competitive hydrogenation of C=O and CAO.This study develops heterogeneous Cu catalysts for the selective synthesis of ethylene glycol via batch liquid-phase hydrogenation of glycolaldehyde.SiO_(2)supported Cu,fabricated by ammonia evaporation,enables to catalyze the C=O bond hydrogenation with retaining the CAO bond intact,yielding higher selective hydrogenation activity with ethylene glycol selectivity up to 99.8%relative to MgO,Al_(2)O_(3),CeO_(2),and TiO_(2)supports and Cu/SiO_(2)synthesized by deposition–precipitation and impregnation.Characterizations confirm that highly efficient 20Cu/SiO_(2)-AE-623 K catalyst fabricated by ammonia evaporation is featured with larger Cu^(0)and Cu^(+)surface areas,of which the Cu^(+)species created from reducing copper phyllosilicate exhibit higher reactivity.A synergistic effect between Cu^(+)and Cu^(0)facilitates the selective adsorption/activation of glycolaldehyde on Cu^(+)sites and the dissociation of H_(2)on Cu^(0)sites,bringing a remarkable improvement in the selective hydrogenation performance.