We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly s...We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (Ro) and ammonia excretion rate (RN) (P〈0.01). The interactive effects between salinity and body mass on Ro and RN were insignificant (P〉0.05) and highly significant (P〈0.01), respectively. Ro and RN of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between Ro and body mass was represented by Ro=aWb (R^2=0.956, P〈0.01). The relationship between RN and the body mass ofB. pectinirostris was represented by RN-cW^at (R^2=0.966, P〈0.01). The Ro/RN (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy significantly higher at 27 than at other salinity levels B, pectinirostris is 27. source within the salinity range 12 32. Ro andRN were Our results suggest that the optimum salinity level for B. pectinirostris is 27.展开更多
There are more than 2000 species of brittle stars in the world. For most of them, many scientific questions including basic characteristics of eco-physiology are still unknown. In the present study, Ophiopholis sarsii...There are more than 2000 species of brittle stars in the world. For most of them, many scientific questions including basic characteristics of eco-physiology are still unknown. In the present study, Ophiopholis sarsii vadicola acclimated at 15 ℃, salinity 31, were assessed for temperature monia excretion were studied at different temperatures (5, 10, and salinity tolerance. Its oxygen consumption and am- 15, 20, 25℃) and salinities (25, 30, 35). O. sarsii vadi- cola could tolerate 0-24℃ and no brittle star was dead in the salinity range of 19-48 in the experimental situation. Two-way ANOVA showed that the oxygen consumption and ammonia excretion normalized with both dry mass and wet mass, Q10, which is used to describe the temperature sensitivity of respiration, and moisture content were significantly affected by temperature and salinity, and the combined effects of the two factors were significant. Stepwise multiple regression analysis revealed that logarithmic oxygen consumption and ammonia excretion showed a significant positive relationship with logarithmic temperature and salinity. The logarithmic moisture content of the brittle stars showed an inverse relationship with logarithmic salinity, but a positive relationship with logarithmic temperature. This suggests that the tolerance of temperature and salinity of brittle stars is closely related to their living environment, and that the effects of temperature on oxygen consumption are more significant at higher salinity, and that the ammonia excretion is less affected by salinity at lower temperatures.展开更多
The effects of water temperature on oxygen consumption rate and ammonia excretion rate of Solenaia oleivora were studied in the laboratory. The results showed that, under controlled conditions and ambient temperatures...The effects of water temperature on oxygen consumption rate and ammonia excretion rate of Solenaia oleivora were studied in the laboratory. The results showed that, under controlled conditions and ambient temperatures 15—30℃, the relationship between oxygen consumption rate (O) [mg/h] and dry weight of soft tissue (W) [g] can be represented by an allometric equation O=aW b, while the relationship between ammonia excretion rate (N) [μg/h] and dry weight of soft tissue (W) [g] follows also an allometric equation N=cW b. It is indicated that both metabolic rates are correlated positively with water temperature. High temperature can reduce the level of protein metabolism. The linear regression among oxygen consumption rate (O), temperature (T) and dry weight of soft tissue (W) can be described by the equation O=-0.6513+0.0532T+0.1073W, and for ammonia this relation is N=32.1626-1.0566T+1.3222W, the multiple relation coefficient was 0.9642 and 0.8921, respectively.展开更多
Flow velocity plays an important role in recirculating aquaculture systems(RAS)and the growing practice of culturing juvenile largemouth bass(Micropterus salmoides).In this study,the effects of flow velocity on the wa...Flow velocity plays an important role in recirculating aquaculture systems(RAS)and the growing practice of culturing juvenile largemouth bass(Micropterus salmoides).In this study,the effects of flow velocity on the water quality as well as the ammonia excretion were discussed from the perspective of actual production,and a polynomial model of ammonia nitrogen excretion was established,using the juvenile largemouth bass.Results showed that the range of ammonia nitrogen and nitrite nitrogen decreased with flow velocity increasing,while the number and volume share of large particles increased.According to the polynomial model,compared with the medium flow velocity(11 cm/s,2.45 body length(bl)/s),the ammonia excretion of juvenile largemouth bass at high(18 cm/s,4.00 bl/s),and low(4 cm/s,0.90 bl/s)flow velocity changed faster with time,and the excretion rate peaked at the 6th hour after feeding,earlier than that under medium flow velocity.Therefore,it is suggested to increase the flow velocity at the 5th hour after feeding and then decreased it at the 10th hour,to ensure better water quality in RAS culturing juvenile largemouth bass.展开更多
Effects of reduced salinity on the oxygen consumption rate (OCR) and the ammonia N excretion rate (AER) of scallop Chlamys farreri (3.2 5.9 cm in shell height, 0.147 1.635 g in soft tissue dry weight ) were studied in...Effects of reduced salinity on the oxygen consumption rate (OCR) and the ammonia N excretion rate (AER) of scallop Chlamys farreri (3.2 5.9 cm in shell height, 0.147 1.635 g in soft tissue dry weight ) were studied in laboratory from March 21,1997 to April 16, 1997. Under the controlled conditions of reduced salinity from 31.5 to 15.0 and ambient temperature 17℃ and 23℃, the concentrations of dissolved oxygen and ammonia N were determined by the Winkle method and the hypobromite method, respectively. Results showed that with controlled reduced salinity, the mean values of the OCR were 2.17 mg/(g.h) at 17℃, and 2.86 mg/(g.h) at 23℃and that the mean values of the AER were 178.0 μg/(g.h) at 17℃ and 147.0 μg/(g.h) at 23℃. The OCR and the AER decreased with reducing salinity from 31.5 to 15.0 both at 17℃ and 23℃. The effects of reduced salinity on the OCR and the AER of scallop C. farreri could be represented by the allometric equation and the exponential equation, respectively.展开更多
of temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate of scallop Chlamys farreri (1.7-6.2 cm in shell height) were studied in laboratory from Dec. 30 1996 to Jan. 28, 1997 . Under the controlled...of temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate of scallop Chlamys farreri (1.7-6.2 cm in shell height) were studied in laboratory from Dec. 30 1996 to Jan. 28, 1997 . Under the controlled conditions of ambient water temperature 10-31℃ and salinity 32, the concentrations of dissolved oxygen and ammonia-N were determined by the Winkle method and the hypobromite method , respectively . Results showed that the OCR ranged from 1.20 mg/g (DW). h to 5.76mg/g (DW). h. The OCR increased with temperature from 10℃ to 23℃, but at 28℃ the OCR of mature individuals decreased, and that of different size scallops reduced at 31℃. The ammonia-N excretion rate ranged from 113.13 μg NH4-N/g (DW). h to 486.63 μg NH4 -N/g (DW). h,and increased with temperature from 10℃ to 31℃.展开更多
Biofouling is a particular problem in the pearl oyster culture. It may reduce the growth and survival rates of the cultured species. Foulers are often themselves filter feeders, and are therefore potential competitors...Biofouling is a particular problem in the pearl oyster culture. It may reduce the growth and survival rates of the cultured species. Foulers are often themselves filter feeders, and are therefore potential competitors for food resource with the cultured species. Fouling organisms may also reduce the oxygen supply. A study was conducted to measure the impact of foulers on feeding oxygen consumption, and waste excretion. POM, ammonia, phosphate and oxygen concentration were measured in various treatments (cultured species, foulers). This study showed that fouling organisms had significant effect on food uptake, oxygen consumption and waste excretion. The clearance rate, ammonia and phosphate release rate, oxygen consumption rate of the fouled pearl oyster were greater than those of the clean pearl oysters. Other foulers that settled on cages or buoys also contributed much to phytoplankton depletion, oxygen consumption and concentration increase of ammonia and phosphate in water. Therefore, this study showed us that foulers were important competitors in the pearl oyster cultivation of Daya Bay in November 2005.展开更多
The impact of water temperature(24, 27, 30 and 33℃) and salinity(15, 20, 25, 30 and 33) on oxygen consumption(OCR) and ammonium excretion rate(AER) of ♀ Epinephelus fuscoguttatus ×♂ E. lanceolatus hybrid group...The impact of water temperature(24, 27, 30 and 33℃) and salinity(15, 20, 25, 30 and 33) on oxygen consumption(OCR) and ammonium excretion rate(AER) of ♀ Epinephelus fuscoguttatus ×♂ E. lanceolatus hybrid grouper juveniles(9.39 ± 0.07 g) were investigated under the fed and un-fed conditions. The results showed that the OCR and AER were significantly(P < 0.05) affected by temperature and salinity under both fed and un-fed conditions. When temperature was 24–33℃, the OCR and AER of fed hybrid grouper juveniles were 85.68%–129.52% and 125.78%–287.63%, respectively, higher than those of un-fed hybrid grouper juveniles. The O/N ratio, protein use(P_u), Q_(10)(respiration) and Q_(10)(excretion) of fed hybrid grouper juveniles were 14.43–24.01, 28.35% – 48.48%, 1.69 and 3.01, respectively. The O/N ratio, P_u, Q_(10)(respiration), Q_(10)(excretion) of un-fed hybrid grouper juveniles were 20.39 – 31.79, 22.16% – 34.34%, 1.23 and 1.17, respectively. When salinity was 15–33, the OCR and AER of fed hybrid grouper juveniles increased by 87.42% – 116.85% and 215.38% – 353.57%, respectively, over those of un-fed hybrid grouper juveniles. The O/N ratio and P_u of fed hybrid grouper juveniles were 14.48 – 17.78, 39.36% – 49.43%, respectively. The O/N ratio and Pu of un-fed hybrid grouper juveniles were 20.39 – 31.79 and 22.16% – 34.34%, respectively. The specific dynamic action(SDA) of hybrid grouper juveniles was mainly related to protein metabolism. The results had a guiding significance to the large-scale intensive aquaculture of hybrid grouper juveniles.展开更多
基金Supported by the Natural Science Foundation of Guangdong Province(No.8152408801000015)
文摘We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (Ro) and ammonia excretion rate (RN) (P〈0.01). The interactive effects between salinity and body mass on Ro and RN were insignificant (P〉0.05) and highly significant (P〈0.01), respectively. Ro and RN of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between Ro and body mass was represented by Ro=aWb (R^2=0.956, P〈0.01). The relationship between RN and the body mass ofB. pectinirostris was represented by RN-cW^at (R^2=0.966, P〈0.01). The Ro/RN (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy significantly higher at 27 than at other salinity levels B, pectinirostris is 27. source within the salinity range 12 32. Ro andRN were Our results suggest that the optimum salinity level for B. pectinirostris is 27.
基金supported by the National Basic Research Program of China (Grant No. 2011CB409805)the National Science & Technology Pillar Program (Grant No. 2011BAD13B06)+1 种基金Special Scientific Research Funds for Central Non-profit Institutes, Yellow Sea Fisheries Research Institute (20603022013042)the National Science and Technology Planning Project of China (Grant No. 2011BAD13B05)
文摘There are more than 2000 species of brittle stars in the world. For most of them, many scientific questions including basic characteristics of eco-physiology are still unknown. In the present study, Ophiopholis sarsii vadicola acclimated at 15 ℃, salinity 31, were assessed for temperature monia excretion were studied at different temperatures (5, 10, and salinity tolerance. Its oxygen consumption and am- 15, 20, 25℃) and salinities (25, 30, 35). O. sarsii vadi- cola could tolerate 0-24℃ and no brittle star was dead in the salinity range of 19-48 in the experimental situation. Two-way ANOVA showed that the oxygen consumption and ammonia excretion normalized with both dry mass and wet mass, Q10, which is used to describe the temperature sensitivity of respiration, and moisture content were significantly affected by temperature and salinity, and the combined effects of the two factors were significant. Stepwise multiple regression analysis revealed that logarithmic oxygen consumption and ammonia excretion showed a significant positive relationship with logarithmic temperature and salinity. The logarithmic moisture content of the brittle stars showed an inverse relationship with logarithmic salinity, but a positive relationship with logarithmic temperature. This suggests that the tolerance of temperature and salinity of brittle stars is closely related to their living environment, and that the effects of temperature on oxygen consumption are more significant at higher salinity, and that the ammonia excretion is less affected by salinity at lower temperatures.
文摘The effects of water temperature on oxygen consumption rate and ammonia excretion rate of Solenaia oleivora were studied in the laboratory. The results showed that, under controlled conditions and ambient temperatures 15—30℃, the relationship between oxygen consumption rate (O) [mg/h] and dry weight of soft tissue (W) [g] can be represented by an allometric equation O=aW b, while the relationship between ammonia excretion rate (N) [μg/h] and dry weight of soft tissue (W) [g] follows also an allometric equation N=cW b. It is indicated that both metabolic rates are correlated positively with water temperature. High temperature can reduce the level of protein metabolism. The linear regression among oxygen consumption rate (O), temperature (T) and dry weight of soft tissue (W) can be described by the equation O=-0.6513+0.0532T+0.1073W, and for ammonia this relation is N=32.1626-1.0566T+1.3222W, the multiple relation coefficient was 0.9642 and 0.8921, respectively.
基金financially supported by the Open Fund of Zhejiang Institute of Freshwater Fisheries(Grant No.ZJK201905)the Key R&D Program of Zhejiang Province,China(Grant No.2021C02024,2019C02082)the Technology Program of the Department of Agriculture and Rural Areas of Zhejiang Province,China(Grant No.2020XTTGSC01).
文摘Flow velocity plays an important role in recirculating aquaculture systems(RAS)and the growing practice of culturing juvenile largemouth bass(Micropterus salmoides).In this study,the effects of flow velocity on the water quality as well as the ammonia excretion were discussed from the perspective of actual production,and a polynomial model of ammonia nitrogen excretion was established,using the juvenile largemouth bass.Results showed that the range of ammonia nitrogen and nitrite nitrogen decreased with flow velocity increasing,while the number and volume share of large particles increased.According to the polynomial model,compared with the medium flow velocity(11 cm/s,2.45 body length(bl)/s),the ammonia excretion of juvenile largemouth bass at high(18 cm/s,4.00 bl/s),and low(4 cm/s,0.90 bl/s)flow velocity changed faster with time,and the excretion rate peaked at the 6th hour after feeding,earlier than that under medium flow velocity.Therefore,it is suggested to increase the flow velocity at the 5th hour after feeding and then decreased it at the 10th hour,to ensure better water quality in RAS culturing juvenile largemouth bass.
文摘Effects of reduced salinity on the oxygen consumption rate (OCR) and the ammonia N excretion rate (AER) of scallop Chlamys farreri (3.2 5.9 cm in shell height, 0.147 1.635 g in soft tissue dry weight ) were studied in laboratory from March 21,1997 to April 16, 1997. Under the controlled conditions of reduced salinity from 31.5 to 15.0 and ambient temperature 17℃ and 23℃, the concentrations of dissolved oxygen and ammonia N were determined by the Winkle method and the hypobromite method, respectively. Results showed that with controlled reduced salinity, the mean values of the OCR were 2.17 mg/(g.h) at 17℃, and 2.86 mg/(g.h) at 23℃and that the mean values of the AER were 178.0 μg/(g.h) at 17℃ and 147.0 μg/(g.h) at 23℃. The OCR and the AER decreased with reducing salinity from 31.5 to 15.0 both at 17℃ and 23℃. The effects of reduced salinity on the OCR and the AER of scallop C. farreri could be represented by the allometric equation and the exponential equation, respectively.
文摘of temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate of scallop Chlamys farreri (1.7-6.2 cm in shell height) were studied in laboratory from Dec. 30 1996 to Jan. 28, 1997 . Under the controlled conditions of ambient water temperature 10-31℃ and salinity 32, the concentrations of dissolved oxygen and ammonia-N were determined by the Winkle method and the hypobromite method , respectively . Results showed that the OCR ranged from 1.20 mg/g (DW). h to 5.76mg/g (DW). h. The OCR increased with temperature from 10℃ to 23℃, but at 28℃ the OCR of mature individuals decreased, and that of different size scallops reduced at 31℃. The ammonia-N excretion rate ranged from 113.13 μg NH4-N/g (DW). h to 486.63 μg NH4 -N/g (DW). h,and increased with temperature from 10℃ to 31℃.
文摘Biofouling is a particular problem in the pearl oyster culture. It may reduce the growth and survival rates of the cultured species. Foulers are often themselves filter feeders, and are therefore potential competitors for food resource with the cultured species. Fouling organisms may also reduce the oxygen supply. A study was conducted to measure the impact of foulers on feeding oxygen consumption, and waste excretion. POM, ammonia, phosphate and oxygen concentration were measured in various treatments (cultured species, foulers). This study showed that fouling organisms had significant effect on food uptake, oxygen consumption and waste excretion. The clearance rate, ammonia and phosphate release rate, oxygen consumption rate of the fouled pearl oyster were greater than those of the clean pearl oysters. Other foulers that settled on cages or buoys also contributed much to phytoplankton depletion, oxygen consumption and concentration increase of ammonia and phosphate in water. Therefore, this study showed us that foulers were important competitors in the pearl oyster cultivation of Daya Bay in November 2005.
基金supported by the project of National Science and Technology Supporting Plan (No. 2011BAD13B04)
文摘The impact of water temperature(24, 27, 30 and 33℃) and salinity(15, 20, 25, 30 and 33) on oxygen consumption(OCR) and ammonium excretion rate(AER) of ♀ Epinephelus fuscoguttatus ×♂ E. lanceolatus hybrid grouper juveniles(9.39 ± 0.07 g) were investigated under the fed and un-fed conditions. The results showed that the OCR and AER were significantly(P < 0.05) affected by temperature and salinity under both fed and un-fed conditions. When temperature was 24–33℃, the OCR and AER of fed hybrid grouper juveniles were 85.68%–129.52% and 125.78%–287.63%, respectively, higher than those of un-fed hybrid grouper juveniles. The O/N ratio, protein use(P_u), Q_(10)(respiration) and Q_(10)(excretion) of fed hybrid grouper juveniles were 14.43–24.01, 28.35% – 48.48%, 1.69 and 3.01, respectively. The O/N ratio, P_u, Q_(10)(respiration), Q_(10)(excretion) of un-fed hybrid grouper juveniles were 20.39 – 31.79, 22.16% – 34.34%, 1.23 and 1.17, respectively. When salinity was 15–33, the OCR and AER of fed hybrid grouper juveniles increased by 87.42% – 116.85% and 215.38% – 353.57%, respectively, over those of un-fed hybrid grouper juveniles. The O/N ratio and P_u of fed hybrid grouper juveniles were 14.48 – 17.78, 39.36% – 49.43%, respectively. The O/N ratio and Pu of un-fed hybrid grouper juveniles were 20.39 – 31.79 and 22.16% – 34.34%, respectively. The specific dynamic action(SDA) of hybrid grouper juveniles was mainly related to protein metabolism. The results had a guiding significance to the large-scale intensive aquaculture of hybrid grouper juveniles.