Heavy metal pollution affects soil ecological function.Biochar and compost can effectively remediate heavy metals and increase soil nutrients.The effects and mechanisms of biochar and compost amendments on soil nitrog...Heavy metal pollution affects soil ecological function.Biochar and compost can effectively remediate heavy metals and increase soil nutrients.The effects and mechanisms of biochar and compost amendments on soil nitrogen cycle function in heavy-metal contaminated soils are not fully understood.This study examined how biochar,compost,and their integrated use affected ammonia-oxidizing microorganisms in heavy metal polluted soil.Quantitative PCR was used to determine the abundance of ammonia-oxidizing archaea(AOA)and bacteria(AOB).Ammonia monooxygenase(AMO)activity was evaluated by the enzymelinked immunosorbent assay.Results showed that compost rather than biochar improved nitrogen conversion in soil.Biochar,compost,or their integrated application significantly reduced the effective Zn and Cd speciation.Adding compost obviously increased As and Cu effective speciation,bacterial 16 S rRNA abundance,and AMO activity.AOB,stimulated by compost addition,was significantly more abundant than AOA throughout remediation.Correlation analysis showed that AOB abundance positively correlated with NO_(3)^(-)-N(r=0.830,P<0.01),and that AMO activity had significant correlation with EC(r=-0.908,P<0.01)and water-soluble carbon(r=-0.868,P<0.01).Those seem to be the most vital factors affecting AOB community and their function in heavy metal-polluted soil remediated by biochar and compost.展开更多
基金supported by the Hunan Provincial Key Research and Development Project(Nos.2019WK2031 and 2017SK2351)the National Natural Science Foundation of China(No.51408219)+1 种基金the Natural Science Foundation of Hu-nan Province(No.2020JJ5259)the Outstanding Youth Fund Project of the Hunan Education Department(No.18B094)。
文摘Heavy metal pollution affects soil ecological function.Biochar and compost can effectively remediate heavy metals and increase soil nutrients.The effects and mechanisms of biochar and compost amendments on soil nitrogen cycle function in heavy-metal contaminated soils are not fully understood.This study examined how biochar,compost,and their integrated use affected ammonia-oxidizing microorganisms in heavy metal polluted soil.Quantitative PCR was used to determine the abundance of ammonia-oxidizing archaea(AOA)and bacteria(AOB).Ammonia monooxygenase(AMO)activity was evaluated by the enzymelinked immunosorbent assay.Results showed that compost rather than biochar improved nitrogen conversion in soil.Biochar,compost,or their integrated application significantly reduced the effective Zn and Cd speciation.Adding compost obviously increased As and Cu effective speciation,bacterial 16 S rRNA abundance,and AMO activity.AOB,stimulated by compost addition,was significantly more abundant than AOA throughout remediation.Correlation analysis showed that AOB abundance positively correlated with NO_(3)^(-)-N(r=0.830,P<0.01),and that AMO activity had significant correlation with EC(r=-0.908,P<0.01)and water-soluble carbon(r=-0.868,P<0.01).Those seem to be the most vital factors affecting AOB community and their function in heavy metal-polluted soil remediated by biochar and compost.