期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of Clay/Biochar Composite Adsorption Particle and Performance for Ammonia Nitrogen Removal from Aqueous Solution 被引量:7
1
作者 HUANG Xiao BAI Jie +3 位作者 LI Kuiran ZHAO Yangguo TIAN Weijun HU Chunhui 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期729-739,共11页
This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance ... This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water. 展开更多
关键词 CLAY BIOCHAR composite adsorption particle ammonia nitrogen removal adsorption mechanism
下载PDF
Electrochemical removal of ammonium nitrogen in high efficiency and N_(2) selectivity using non-noble single-atomic iron catalyst 被引量:2
2
作者 Fengjiao Quan Guangming Zhan +6 位作者 Bing Zhou Cancan Ling Xiaobing Wang Wenjuan Shen Jianfen Li Falong Jia Lizhi Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期544-552,共9页
Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of preciou... Ammonia nitrogen (NH_(4)^(+)-N) is a ubiquitous environmental pollutant,especially in offshore aquaculture systems.Electrochemical oxidation is very promising to remove NH_(4)^(+)-N,but suffers from the use of precious metals anodes.In this work,a robust and cheap electrocatalyst,iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C),was developed for electrochemical removal of NH_(4)^(+)-N from in wastewater containing chloride.The FeSAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon(Fe-NPs/N-C),unmodified carbon and conventional Ti/IrO_(2)-TiO_(2)-RuO_(2)electrodes.And high removal efficiency (>99%) could be achieved as well as high N_(2)selectivity (99.5%) at low current density.Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH_(4)^(+)-N.This study provides promising inexpensive catalysts for NH_(4)^(+)-N removal in aquaculture wastewater. 展开更多
关键词 ammonia nitrogen removal Single-atom iron Non-noble metal catalyst Aquaculture wastewater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部