期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hybrid Donnan dialysiseelectrodialysis for efficient ammonia recovery from anaerobic digester effluent
1
作者 Zhinan Dai Cong Chen +5 位作者 Yifan Li Haoquan Zhang a Jingmei Yao Mariana Rodrigues Philipp Kuntke Le Han 《Environmental Science and Ecotechnology》 SCIE 2023年第3期128-135,共8页
Ammonia recovery from wastewater is crucial,yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed.Herein,a membrane-based hybrid process of the ... Ammonia recovery from wastewater is crucial,yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed.Herein,a membrane-based hybrid process of the Donnan dialysiseelectrodialysis process(DDeED)was proposed for sustainable and efficient ammonia recovery.In principle,DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 t and driven cation(Nat)across the cation exchange membrane,given industrial sodium salt as a driving chemical.An additional ED stage driven by solar energy realizes a further removal of ammonia,recovery of driven cation,and replenishment of OHtoward ammonia stripping.Our results demonstrated that the hybrid DDeED process achieved ammonia removal efficiency>95%,driving cation(Nat)recovery efficiency>87.1%for synthetic streams,and reduced the OH-loss by up to 78%compared to a standalone DD case.Ammonia fluxes of 98.2 gN m^(-2)d^(-1)with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN^(-1).With verified mass transfer modeling,reasonably controlled operation,and beneficial recovery performance,the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural,remote area. 展开更多
关键词 ammonia recovery Donnan Dialysis ELECTRODIALYSIS Brine utilization Anaerobic digester effluent
原文传递
A tartrate-EDTA-Fe complex mediates electron transfer and enhances ammonia recovery in a bioelectrochemical-stripping system
2
作者 De-Xin Zhang Si-Yuan Zhai +8 位作者 Ran Zeng Cheng-Yan Liu Bo Zhang Zhe Yu Li-Hui Yang Xi-Qi Li Ya-Nan Hou Ai-Jie Wang Hao-Yi Cheng 《Environmental Science and Ecotechnology》 SCIE 2022年第3期93-101,共9页
Traditional bioelectrochemical systems(BESs)coupled with stripping units for ammonia recovery suffer from an insufficient supply of electron acceptors due to the low solubility of oxygen.In this study,we proposed a no... Traditional bioelectrochemical systems(BESs)coupled with stripping units for ammonia recovery suffer from an insufficient supply of electron acceptors due to the low solubility of oxygen.In this study,we proposed a novel strategy to efficiently transport the oxidizing equivalent provided at the stripping unit to the cathode by introducing a highly soluble electron mediator(EM)into the catholyte.To validate this strategy,we developed a new kind of iron complex system(tartrate-EDTA-Fe)as the EM.EDTA-Fe contributed to the redox property with a midpoint potential of0.075 V(vs.standard hydrogen electrode,SHE)at pH 10,whereas tartrate acted as a stabilizer to avoid iron precipitation under alkaline conditions.At a ratio of the catholyte recirculation rate to the anolyte flow rate(RC-A)of 12,the NH4 t-N recovery rate in the system with 50mM tartrate-EDTA-Fe complex reached 6.9±0.2 g Nm^(-2) d^(-1),approximately 3.8 times higher than that in the non-EM control.With the help of the complex,our system showed an NH4 t-N recovery performance comparable to that previously reported but with an extremely low RC-A(0.5 vs.288).The strategy proposed here may guide the future of ammonia recovery BES scale-up because the introduction of an EM allows aeration to be performed only at the stripping unit instead of at every cathode,which is beneficial for the system design due to its simplicity and reliability. 展开更多
关键词 Bioelectrochemical system ammonia recovery Electron mediator STRIPPING Tartrate-EDTA-Fe
原文传递
Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite
3
作者 Kuo Fang Fei Peng +2 位作者 Hui Gong Huanzhen Zhang Kaijun Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2021年第1期125-134,共10页
Low-strength municipal wastewater is considered to be a recoverable nutrient resource with economic and environmental benefits.Thus,various technologies for nutrient removal and recovery have been developed.In this pa... Low-strength municipal wastewater is considered to be a recoverable nutrient resource with economic and environmental benefits.Thus,various technologies for nutrient removal and recovery have been developed.In this paper,powdered ion exchange resin was employed for ammonia removal and recovery from imitated low-strength municipal wastewater.The effects of various working conditions(powdered resin dosage,initial concentration,and pH value)were studied in batch experiments to investigate the feasibility of the approach and to achieve performance optimization.The maximum adsorption capacity determined by the Langmuir model was 44.39 mg/g,which is comparable to traditional ion exchange resin.Further,the effects of co-existing cations(Ca^(2+),Mg^(2+),K^(+))were studied.Based on the above experiments,recovery of ammonia as struvite was successfully achieved by a proposed two-stage crystallization process coupled with a powdered resin ion exchange process.Scanning electron microscopy(SEM)and X-ray diffractometry(XRD)results revealed that struvite crystals were successfully gained in alkaline conditions(pH=10).This research demonstrates that a powdered resin and two-stage crystallization process provide an innovative and promising means for highly efficient and easy recovery from low-strength municipal wastewater. 展开更多
关键词 ammonia removal and recovery Powdered resin Crystallization process STRUVITE Co-existing cations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部