In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The...In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.展开更多
At present,frequent outbreaks of bacteria and viruses have seriously affected people's normal lives.Therefore,the study of broad-spectrum antibacterial nanocomposites is very promising.However,most antibacterial m...At present,frequent outbreaks of bacteria and viruses have seriously affected people's normal lives.Therefore,the study of broad-spectrum antibacterial nanocomposites is very promising.However,most antibacterial materials have some disadvantages,such as single bactericidal mechanisms and unrepeatable use.Based on the current situation,a kind of nanocomposite with three structures of graphene oxide(GO),quaternary ammonium salt(QAs)and N-halamine was prepared,which showed synergistic effect to improve antibacterial activity and combined with a variety of sterilization mechanisms.Meanwhile,GO can provide richer ways of sterilization and high specific surface area,which is conducive to the grafting of quaternarized N-halamine.The advantages of physical sterilization of GO,charge adsorption of QAs,reuse of N-halamine and efficient sterilization are fully utilized.The results showed that the quaternarized N-halamine-grafted GO was obtained successfully.GO grafted with quaternarized N-halamine polymer showed strong speedy bactericidal activity against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)(99%).It had good storage and regeneration properties.展开更多
基金the FANEDD of China (No. 200352)the Fok Ying Tong Education Foundation (No. 101028) for financial support
文摘In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.
基金supported by the National Natural Science Foundation of China(No.51603020)the Jilin Province Science and Technology Natural Science Foundation Project of China(No.20180101193JC).
文摘At present,frequent outbreaks of bacteria and viruses have seriously affected people's normal lives.Therefore,the study of broad-spectrum antibacterial nanocomposites is very promising.However,most antibacterial materials have some disadvantages,such as single bactericidal mechanisms and unrepeatable use.Based on the current situation,a kind of nanocomposite with three structures of graphene oxide(GO),quaternary ammonium salt(QAs)and N-halamine was prepared,which showed synergistic effect to improve antibacterial activity and combined with a variety of sterilization mechanisms.Meanwhile,GO can provide richer ways of sterilization and high specific surface area,which is conducive to the grafting of quaternarized N-halamine.The advantages of physical sterilization of GO,charge adsorption of QAs,reuse of N-halamine and efficient sterilization are fully utilized.The results showed that the quaternarized N-halamine-grafted GO was obtained successfully.GO grafted with quaternarized N-halamine polymer showed strong speedy bactericidal activity against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)(99%).It had good storage and regeneration properties.