Ammonia is important feedstock for both fertilizer production and carbon-free liquid fuel.Many techniques for ammonia formation have been developed,hoping to replace the industrial energy-intensive Haber-Bosch route.E...Ammonia is important feedstock for both fertilizer production and carbon-free liquid fuel.Many techniques for ammonia formation have been developed,hoping to replace the industrial energy-intensive Haber-Bosch route.Electrochemical synthesis of ammonia in molten salts is one promising alternative method due to the strong solubility of N3- ions,a wide potential window of molten salt electrolytes and tunable electrode reactions.Generally,electrochemical synthesis of ammonia in molten salts begins with the electro-cleavage of N2/hydrogen sources on electrode surfaces,followed by diffusion of N3^-/H^+-containing ions towards each other for NH3 formation.Therefore,the hydrogen sources and molten salt composition will greatly affect the reactions on electrodes and ions diffusion in electrolytes,being critical factors determining the faradaic efficiency and formation rate for ammonia synthesis.This report summarizes the selection criteria for hydrogen sources,the reaction characteristics in various molten salt systems,and the preliminary explorations on the scaling-up synthesis of ammonia in molten salt.The formation rate and faradaic efficiency for ammonia synthesis are discussed in detail based on different hydrogen sources,various molten salt systems,changed electrolysis conditions as well as diverse catalysts.Electrochemical synthesis of ammonia might be further enhanced by optimizing the molten salt composition,using electrocatalysts with well-defined composition and microstructure,and innovation of novel reaction mechanism.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the ...The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2.mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.展开更多
We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction frag...We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.展开更多
TS-1/SiO_2 extrudate was post-treated with mixed solution of tetrapropyl ammonium hydroxide(TPAOH)and various ammonium salts solution(NH_4F,(NH_4)_3PO_4,(NH_4)_2CO_3,(NH_4)_2SO_4,NH_4CH_3CO_2,NH_4NO_3,NH_4Cl and(NH_4)...TS-1/SiO_2 extrudate was post-treated with mixed solution of tetrapropyl ammonium hydroxide(TPAOH)and various ammonium salts solution(NH_4F,(NH_4)_3PO_4,(NH_4)_2CO_3,(NH_4)_2SO_4,NH_4CH_3CO_2,NH_4NO_3,NH_4Cl and(NH_4)_2TiF_6).The obtained hierarchical TS-1 catalysts were characterized by many techniques and tested for propylene epoxidation using hydrogen peroxide as an oxidant in a fixed-bed reactor.It was shown that the physicochemical and catalytic properties of the treated TS-1/SiO_2 extrudate depended on the types of ammonium salts added.Compared to the treatment with TPAOH alone,the treatment with a mixed solution of TPAOH and some ammonium salts can greatly improve the catalytic properties of the treated TS-1/SiO_2 extrudate.Some of these ammonium salts were favorable for the incorporation of titanium in the framework,and the beneficial effect depended on the types of ammonium salt.TS-1/SiO_2 extrudate treated with a mixed solution of TPAOH and(NH_4)_3PO_4 exhibited the highest catalyst stability in propylene epoxidation.Such catalytic property can be correlated to high crystallinity,more framework titanium,large specific surface area and large external surface area.展开更多
[Objective] The aim of this study was to investigate the effects of salt stress on cell expansion in Arabidopsis thaliana rosette leaves.[Method] Arabidopsis seedlings were treated by sodium chloride at the concentrat...[Objective] The aim of this study was to investigate the effects of salt stress on cell expansion in Arabidopsis thaliana rosette leaves.[Method] Arabidopsis seedlings were treated by sodium chloride at the concentration of 0,100 or 150 mmol/L. At the 7th and 14th d of treatment,with nail enamel printing mark method and computer software,the leaf blades area and abaxial epidermal pavement cells area was measured and compared using statistical analysis in Excel. [Result] The growth of Arabidopsis rosette leaves was inhibited under salt stress. Leaves treated for 7 or 14 d expanded less compared with controls. The salt-mediated decrease in leaf expansion is associated with a decrease in abaxial pavement cell expansion. [Conclusion] The decreased leaf and epidermal cell expansion under salt stress is the most important characteristic of plant physiological response to salt stress.展开更多
The mixture of five yeast strains obtained from soil could remove about 85% TOC of oil rich wastewater in batch test. While the highest MLSS was obtained at an N∶C of 1∶5, the oil removal decreased with the increas...The mixture of five yeast strains obtained from soil could remove about 85% TOC of oil rich wastewater in batch test. While the highest MLSS was obtained at an N∶C of 1∶5, the oil removal decreased with the increase of N∶C during yeast sludge cultivation. Ammonium chloride was the best nitrogen source for yeast cultivation from the viewpoint of yeast growth and oil utilization. An ammonia concentration of over 1300 mg/L led to mass death of yeast at a pH of 5. The ammonia concentration should be controlled at a level of 1000 mg/L or lower.展开更多
Defatted rice bran dietary fiber (DRBDF) was modified by micronization, ultrasound, microwave and extrusion cooking. We investigated the impacts of these physical treatments on the fermentation ability and bile salts ...Defatted rice bran dietary fiber (DRBDF) was modified by micronization, ultrasound, microwave and extrusion cooking. We investigated the impacts of these physical treatments on the fermentation ability and bile salts binding capacity of DRBDF. In-vitro fermentation by human fecal bacteria of modified fibers showed that the major fermentation products were propionic, acetate and butyrate acid. Fermentation of extruded fiber gave the highest amounts of propionic and acetic acid 135.76 and 25.45 mmol/L respectively, while, the fermented product with microwaved fiber had the highest butyric acid content (10.75 mmol/L). The amount of short-chain fatty acid increased from 12 h to 24 h and propionic acid was the predominant. On the other hand,in-vitrobile salts binding showed that extruded fiber had higher affinity with sodium deoxycholate and sodium chenodeoxycholate (66.14% and 30.25% respectively) while microwaved fiber exhibited the highest affinity with sodium taurocholate (14.38%). In the light of obtained results we can affirmed that these physical treatments significantly improved the fermentation products and bile salts binding capacity of DRBDF. Extrusion compared to the other physical treatment methods used in this study has greatly and positively influenced the fermentation and bile binding capacity of DRBDF.展开更多
[ Objective ] The study aimed to discuss the optimal conditions for the treatment of enzymolysis wastewater by centrifugation - coagu- lation - Fenton reagent oxidation - adsorption process. [ Metbod] According to the...[ Objective ] The study aimed to discuss the optimal conditions for the treatment of enzymolysis wastewater by centrifugation - coagu- lation - Fenton reagent oxidation - adsorption process. [ Metbod] According to the water-quality characteristics of wastewater from a heparin so- dium production factory of Jiangsu Province, enzymolysis wastewater was segregated from intestinal lavage wastewater and treated through cen- trifugation- coagulation- Fenton reagent oxidation-adsorption process, and the optimal technical parameters were determined. E Resultl After enzymolysis wastewater was centrifuged at a speed of 4 000 rpm, 0.6 g/L CTS as the coagulant was added to the supematant. Hereafter, pH of the coagulated effluent was adjusted to 3, and then 1.5% (V/V) H2O2 was added to the coagulated effluent; a certain amount of ferrous sul- fate (n H2O2-.n FeSO4 . 7H2O =8:1 ) was added to the mixture; the reaction conducted for 30 min, and then solution pH was adjusted to about 9. Finally, the oxidized effluent flowed through a resin red until the adsorptive capacity reached 240 BV, and COD of the effluent water was lower than 100 mg/L, meeting the Grade-I standard of Comprehensive Discharge Standard of Sewage (GB8978-1996). [Condusio] The research could provide a new process for the treatment of enzymolysis wastewater.展开更多
A new technique of magnesia electrolysis from bischofite in Qinghai salt lakes was investigated experimentally. Magnesia was prepared by ammonia processing. On an electrolysis cell of about 100 A capacity at 700degree...A new technique of magnesia electrolysis from bischofite in Qinghai salt lakes was investigated experimentally. Magnesia was prepared by ammonia processing. On an electrolysis cell of about 100 A capacity at 700degreesC, magnesium metal was obtained with a current efficiency of 90.23% and a specific energy consumption of 11.5 kW(.)h. The new technique has the advantages of energy saving, high current efficiency and environmental amity.展开更多
The metal–support interactions induced by high-temperature hydrogen reduction have a strong influence on the catalytic performance of ceria-supported Ru catalysts. However, the appearance of the strong metal–support...The metal–support interactions induced by high-temperature hydrogen reduction have a strong influence on the catalytic performance of ceria-supported Ru catalysts. However, the appearance of the strong metal–support interaction leads to covering of the Ru species by Ce suboxides, which is detrimental to the ammonia synthesis reaction that requires metallic species as active sites. In the present work, the interaction between Ru and ceria in the Ru/CeO_(2) catalyst was induced by NaBH_(4) treatment. NaBH_(4) treatment enhanced the fraction of metallic Ru, proportion of Ce^(3+), content of exposed Ru species, and amount of surface oxygen species. As a result, a larger amount of hydrogen species would desorb by the H_(2)-formation pathway and the strength of hydrogen adsorption would be weaker, weakening the inhibition effect of the hydrogen species on ammonia synthesis. In addition, the strong electronic metal–support interaction aids in nitrogen dissociation. Consequently, Ru/CeO_(2) with NaBH_(4) treatment showed higher ammonia synthesis rates than that with only hydrogen reduction.展开更多
The morphology and supermolecular structures of the scoured/bleached ramie and scoured/bleached/liquid ammonia treated ramie were studied by means of scanning electron microscope, X-ray diffractometer, reverse gel per...The morphology and supermolecular structures of the scoured/bleached ramie and scoured/bleached/liquid ammonia treated ramie were studied by means of scanning electron microscope, X-ray diffractometer, reverse gel permeation chromatography, etc. The results indic.ate that liquid ammonia treatment of the scoured/bleached ramie leads to a smoother surface, a lower crystalliuity, partial crystal transformation from cellulose Ⅰ to cellulose Ⅲ a decrease in the volume and cumulative surface area of the larger micropores and an increase in those of the smaller ones in the fiber.展开更多
Urban sewage treatment facility is an important ways to control polluted domestic water. The operation of urban sewage treatment facilities is good or not, and whether the effectiveness of pollutant emission reduction...Urban sewage treatment facility is an important ways to control polluted domestic water. The operation of urban sewage treatment facilities is good or not, and whether the effectiveness of pollutant emission reduction can be exerted play a significant role in reducing the pollution of living sources. Nowadays the operation of urban sewage treatment facilities is mainly evaluated by the load rate. However, due to the failure to fully implement the reformation of the rainwater and polluted water in Guangdong Province, the domestic sewage is mixed with rainwater during the rainy season and is included in the treatment of urban sewage treatment facilities. Therefore, it is not objective to evaluate the operation of sewage treatment facilities using only the load rate of sewage treatment. According to the situation of Guangdong Province, the load rates of COD, ammonia nitrogen and total phosphorus in domestic sewage and load rate of sewage treatment were included in the evaluation, and 20 urban sewage treatment facilities were selected as research objects. The operation situations and emission reduction benefits of urban sewage treatment facilities in different regions of Guangdong Province were roughly evaluated.展开更多
In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The...In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.展开更多
The use of air scrubbers to reduce ammonia (NH<sub>3</sub>) emissions from buildings on pig farms is one of the most promising techniques in the GÖteborg protocol and other European regulations includ...The use of air scrubbers to reduce ammonia (NH<sub>3</sub>) emissions from buildings on pig farms is one of the most promising techniques in the GÖteborg protocol and other European regulations including the Industrial Emission Directive. In France, some air scrubbers are currently used on pig farms, mainly to reduce odours from livestock buildings. However, recent research revealed the production of N<sub>2</sub>O resulting from the treatment of air from pig buildings. In this context, a two-month study was conducted on a pig farm with 750 places for fattening pigs to check the abatement of NH3 emissions and to assess the possible production of N<sub>2</sub>O during treatment of exhausted air from buildings housing fattening pigs by a air scrubber. Concentrations of NH<sub>3</sub> and N<sub>2</sub>O in the inlet and outlet air of the scrubber were continuously monitored using an Innova 1412 infrared analyzer. With the scrubber operating parameters (airflow, design, size), our results confirmed the production of N<sub>2</sub>O in the order of 5% of NH<sub>3</sub>-N reduced. N<sub>2</sub>O was produced by biological nitrification and/or denitrification inside the air scrubber. Statistical analysis (Pearson’s test) showed that the production of N<sub>2</sub>O was strongly influenced by the rate of airflow and the outside temperature. The abatement of NH<sub>3</sub> emissions from the building was only 33%, i.e. much lower than the 70% - 90% usually cited in the literature.展开更多
To screen multifunctional bacteria for water treatment,a chemical oxygen demand( COD)degradation and flocculation strain S2 A15 was obtained from the offshore sewage outfall at Weihai International Beach. Based on the...To screen multifunctional bacteria for water treatment,a chemical oxygen demand( COD)degradation and flocculation strain S2 A15 was obtained from the offshore sewage outfall at Weihai International Beach. Based on the phylogenetic characteristics,a novel strain was identified as a Planococcus species. Strain S2 A15 was determined to have the ability of flocculation and COD degradation. A series of experiments showed that the strain S2 A15 could be used for the treatment of four types of wastewater,including domestic wastewater( 400 mg/L and 800 mg/L) and high salt domestic wastewater( 400 mg/L and 800 mg/L). Among them,the best effect was exerted by the strain that reduced by 76.9% in domestic wastewater with 400 mg/L COD. The flocculation ratio reached 60.19%. The optimal treatment conditions are also discussed. We confirmed that the strain S2 A15 had salt tolerance and low temperature resistance. The best growth of S2 A15 at salt concentration of 6% and further confirmed that the strain could degrade COD at a low temperature.展开更多
Objective To study the wound-healting ability of immobilized forms of miramistinum and metronidazole,based on a sodium salt of carboxymethylcellulose.Methods The research was made on an experimental model of a purulen...Objective To study the wound-healting ability of immobilized forms of miramistinum and metronidazole,based on a sodium salt of carboxymethylcellulose.Methods The research was made on an experimental model of a purulent wound and levomecol was used for comparison.Results During the experiment antimicrobial activity of made drugs was evaluated and the planimetric assessment of the process of epithelialization of the wound’s surface,bacterial load,morphometric examination of histological drugs for wounds and were made.ConclusionThe benefits of combination miramistinum and metronidazole,immobilized on a sodium salt of carboxymethylcellulose,compared with the drug levomecol.展开更多
基金the funding support from the National Natural Science Foundation of China(51722404,51674177,51804221 and 91845113)the National Key R&D Program of China(2018YFE0201703)the China Postdoctoral Science Foundation(2018M642906 and 2019T120684)。
文摘Ammonia is important feedstock for both fertilizer production and carbon-free liquid fuel.Many techniques for ammonia formation have been developed,hoping to replace the industrial energy-intensive Haber-Bosch route.Electrochemical synthesis of ammonia in molten salts is one promising alternative method due to the strong solubility of N3- ions,a wide potential window of molten salt electrolytes and tunable electrode reactions.Generally,electrochemical synthesis of ammonia in molten salts begins with the electro-cleavage of N2/hydrogen sources on electrode surfaces,followed by diffusion of N3^-/H^+-containing ions towards each other for NH3 formation.Therefore,the hydrogen sources and molten salt composition will greatly affect the reactions on electrodes and ions diffusion in electrolytes,being critical factors determining the faradaic efficiency and formation rate for ammonia synthesis.This report summarizes the selection criteria for hydrogen sources,the reaction characteristics in various molten salt systems,and the preliminary explorations on the scaling-up synthesis of ammonia in molten salt.The formation rate and faradaic efficiency for ammonia synthesis are discussed in detail based on different hydrogen sources,various molten salt systems,changed electrolysis conditions as well as diverse catalysts.Electrochemical synthesis of ammonia might be further enhanced by optimizing the molten salt composition,using electrocatalysts with well-defined composition and microstructure,and innovation of novel reaction mechanism.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
文摘The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2.mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.
基金supported by the Key Projects in National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAC19B01-02)the Mega-projects of Science Research for Water (No.2008ZX07313-3)the Program of Introducing Talents of Discipline to Universities
文摘We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.
基金supported by National Natural Science Foundation of China (No. 21276183)
文摘TS-1/SiO_2 extrudate was post-treated with mixed solution of tetrapropyl ammonium hydroxide(TPAOH)and various ammonium salts solution(NH_4F,(NH_4)_3PO_4,(NH_4)_2CO_3,(NH_4)_2SO_4,NH_4CH_3CO_2,NH_4NO_3,NH_4Cl and(NH_4)_2TiF_6).The obtained hierarchical TS-1 catalysts were characterized by many techniques and tested for propylene epoxidation using hydrogen peroxide as an oxidant in a fixed-bed reactor.It was shown that the physicochemical and catalytic properties of the treated TS-1/SiO_2 extrudate depended on the types of ammonium salts added.Compared to the treatment with TPAOH alone,the treatment with a mixed solution of TPAOH and some ammonium salts can greatly improve the catalytic properties of the treated TS-1/SiO_2 extrudate.Some of these ammonium salts were favorable for the incorporation of titanium in the framework,and the beneficial effect depended on the types of ammonium salt.TS-1/SiO_2 extrudate treated with a mixed solution of TPAOH and(NH_4)_3PO_4 exhibited the highest catalyst stability in propylene epoxidation.Such catalytic property can be correlated to high crystallinity,more framework titanium,large specific surface area and large external surface area.
文摘[Objective] The aim of this study was to investigate the effects of salt stress on cell expansion in Arabidopsis thaliana rosette leaves.[Method] Arabidopsis seedlings were treated by sodium chloride at the concentration of 0,100 or 150 mmol/L. At the 7th and 14th d of treatment,with nail enamel printing mark method and computer software,the leaf blades area and abaxial epidermal pavement cells area was measured and compared using statistical analysis in Excel. [Result] The growth of Arabidopsis rosette leaves was inhibited under salt stress. Leaves treated for 7 or 14 d expanded less compared with controls. The salt-mediated decrease in leaf expansion is associated with a decrease in abaxial pavement cell expansion. [Conclusion] The decreased leaf and epidermal cell expansion under salt stress is the most important characteristic of plant physiological response to salt stress.
文摘The mixture of five yeast strains obtained from soil could remove about 85% TOC of oil rich wastewater in batch test. While the highest MLSS was obtained at an N∶C of 1∶5, the oil removal decreased with the increase of N∶C during yeast sludge cultivation. Ammonium chloride was the best nitrogen source for yeast cultivation from the viewpoint of yeast growth and oil utilization. An ammonia concentration of over 1300 mg/L led to mass death of yeast at a pH of 5. The ammonia concentration should be controlled at a level of 1000 mg/L or lower.
文摘Defatted rice bran dietary fiber (DRBDF) was modified by micronization, ultrasound, microwave and extrusion cooking. We investigated the impacts of these physical treatments on the fermentation ability and bile salts binding capacity of DRBDF. In-vitro fermentation by human fecal bacteria of modified fibers showed that the major fermentation products were propionic, acetate and butyrate acid. Fermentation of extruded fiber gave the highest amounts of propionic and acetic acid 135.76 and 25.45 mmol/L respectively, while, the fermented product with microwaved fiber had the highest butyric acid content (10.75 mmol/L). The amount of short-chain fatty acid increased from 12 h to 24 h and propionic acid was the predominant. On the other hand,in-vitrobile salts binding showed that extruded fiber had higher affinity with sodium deoxycholate and sodium chenodeoxycholate (66.14% and 30.25% respectively) while microwaved fiber exhibited the highest affinity with sodium taurocholate (14.38%). In the light of obtained results we can affirmed that these physical treatments significantly improved the fermentation products and bile salts binding capacity of DRBDF. Extrusion compared to the other physical treatment methods used in this study has greatly and positively influenced the fermentation and bile binding capacity of DRBDF.
基金Supported by the Project of Practical Innovation Training Program of Undergraduates in Jiangsu Province in 2012(232)Project of Visiting Engineers of Nanjing College of Chemical Technology in 2012
文摘[ Objective ] The study aimed to discuss the optimal conditions for the treatment of enzymolysis wastewater by centrifugation - coagu- lation - Fenton reagent oxidation - adsorption process. [ Metbod] According to the water-quality characteristics of wastewater from a heparin so- dium production factory of Jiangsu Province, enzymolysis wastewater was segregated from intestinal lavage wastewater and treated through cen- trifugation- coagulation- Fenton reagent oxidation-adsorption process, and the optimal technical parameters were determined. E Resultl After enzymolysis wastewater was centrifuged at a speed of 4 000 rpm, 0.6 g/L CTS as the coagulant was added to the supematant. Hereafter, pH of the coagulated effluent was adjusted to 3, and then 1.5% (V/V) H2O2 was added to the coagulated effluent; a certain amount of ferrous sul- fate (n H2O2-.n FeSO4 . 7H2O =8:1 ) was added to the mixture; the reaction conducted for 30 min, and then solution pH was adjusted to about 9. Finally, the oxidized effluent flowed through a resin red until the adsorptive capacity reached 240 BV, and COD of the effluent water was lower than 100 mg/L, meeting the Grade-I standard of Comprehensive Discharge Standard of Sewage (GB8978-1996). [Condusio] The research could provide a new process for the treatment of enzymolysis wastewater.
基金The work was financially supported by the National Science Foundation of China (20166003).
文摘A new technique of magnesia electrolysis from bischofite in Qinghai salt lakes was investigated experimentally. Magnesia was prepared by ammonia processing. On an electrolysis cell of about 100 A capacity at 700degreesC, magnesium metal was obtained with a current efficiency of 90.23% and a specific energy consumption of 11.5 kW(.)h. The new technique has the advantages of energy saving, high current efficiency and environmental amity.
基金financially supported by the National Science Foundation of China (Nos. 21776047, 21825801, 21978051)the Program for Qishan Scholar of Fuzhou University (Grant XRC18033)。
文摘The metal–support interactions induced by high-temperature hydrogen reduction have a strong influence on the catalytic performance of ceria-supported Ru catalysts. However, the appearance of the strong metal–support interaction leads to covering of the Ru species by Ce suboxides, which is detrimental to the ammonia synthesis reaction that requires metallic species as active sites. In the present work, the interaction between Ru and ceria in the Ru/CeO_(2) catalyst was induced by NaBH_(4) treatment. NaBH_(4) treatment enhanced the fraction of metallic Ru, proportion of Ce^(3+), content of exposed Ru species, and amount of surface oxygen species. As a result, a larger amount of hydrogen species would desorb by the H_(2)-formation pathway and the strength of hydrogen adsorption would be weaker, weakening the inhibition effect of the hydrogen species on ammonia synthesis. In addition, the strong electronic metal–support interaction aids in nitrogen dissociation. Consequently, Ru/CeO_(2) with NaBH_(4) treatment showed higher ammonia synthesis rates than that with only hydrogen reduction.
基金Funded by the Research Fund for the Doctoral Programof High Education
文摘The morphology and supermolecular structures of the scoured/bleached ramie and scoured/bleached/liquid ammonia treated ramie were studied by means of scanning electron microscope, X-ray diffractometer, reverse gel permeation chromatography, etc. The results indic.ate that liquid ammonia treatment of the scoured/bleached ramie leads to a smoother surface, a lower crystalliuity, partial crystal transformation from cellulose Ⅰ to cellulose Ⅲ a decrease in the volume and cumulative surface area of the larger micropores and an increase in those of the smaller ones in the fiber.
文摘Urban sewage treatment facility is an important ways to control polluted domestic water. The operation of urban sewage treatment facilities is good or not, and whether the effectiveness of pollutant emission reduction can be exerted play a significant role in reducing the pollution of living sources. Nowadays the operation of urban sewage treatment facilities is mainly evaluated by the load rate. However, due to the failure to fully implement the reformation of the rainwater and polluted water in Guangdong Province, the domestic sewage is mixed with rainwater during the rainy season and is included in the treatment of urban sewage treatment facilities. Therefore, it is not objective to evaluate the operation of sewage treatment facilities using only the load rate of sewage treatment. According to the situation of Guangdong Province, the load rates of COD, ammonia nitrogen and total phosphorus in domestic sewage and load rate of sewage treatment were included in the evaluation, and 20 urban sewage treatment facilities were selected as research objects. The operation situations and emission reduction benefits of urban sewage treatment facilities in different regions of Guangdong Province were roughly evaluated.
基金the FANEDD of China (No. 200352)the Fok Ying Tong Education Foundation (No. 101028) for financial support
文摘In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.
文摘The use of air scrubbers to reduce ammonia (NH<sub>3</sub>) emissions from buildings on pig farms is one of the most promising techniques in the GÖteborg protocol and other European regulations including the Industrial Emission Directive. In France, some air scrubbers are currently used on pig farms, mainly to reduce odours from livestock buildings. However, recent research revealed the production of N<sub>2</sub>O resulting from the treatment of air from pig buildings. In this context, a two-month study was conducted on a pig farm with 750 places for fattening pigs to check the abatement of NH3 emissions and to assess the possible production of N<sub>2</sub>O during treatment of exhausted air from buildings housing fattening pigs by a air scrubber. Concentrations of NH<sub>3</sub> and N<sub>2</sub>O in the inlet and outlet air of the scrubber were continuously monitored using an Innova 1412 infrared analyzer. With the scrubber operating parameters (airflow, design, size), our results confirmed the production of N<sub>2</sub>O in the order of 5% of NH<sub>3</sub>-N reduced. N<sub>2</sub>O was produced by biological nitrification and/or denitrification inside the air scrubber. Statistical analysis (Pearson’s test) showed that the production of N<sub>2</sub>O was strongly influenced by the rate of airflow and the outside temperature. The abatement of NH<sub>3</sub> emissions from the building was only 33%, i.e. much lower than the 70% - 90% usually cited in the literature.
基金Sponsored by Foundation for Outstanding Young Scientist in Shandong Province(Grant No.BS2014NY012)China Postdoctoral Science Foundation(Grant No.2015M581456)Weihai Major Science and Technology Projects(Grant No.2015ZD08)
文摘To screen multifunctional bacteria for water treatment,a chemical oxygen demand( COD)degradation and flocculation strain S2 A15 was obtained from the offshore sewage outfall at Weihai International Beach. Based on the phylogenetic characteristics,a novel strain was identified as a Planococcus species. Strain S2 A15 was determined to have the ability of flocculation and COD degradation. A series of experiments showed that the strain S2 A15 could be used for the treatment of four types of wastewater,including domestic wastewater( 400 mg/L and 800 mg/L) and high salt domestic wastewater( 400 mg/L and 800 mg/L). Among them,the best effect was exerted by the strain that reduced by 76.9% in domestic wastewater with 400 mg/L COD. The flocculation ratio reached 60.19%. The optimal treatment conditions are also discussed. We confirmed that the strain S2 A15 had salt tolerance and low temperature resistance. The best growth of S2 A15 at salt concentration of 6% and further confirmed that the strain could degrade COD at a low temperature.
文摘Objective To study the wound-healting ability of immobilized forms of miramistinum and metronidazole,based on a sodium salt of carboxymethylcellulose.Methods The research was made on an experimental model of a purulent wound and levomecol was used for comparison.Results During the experiment antimicrobial activity of made drugs was evaluated and the planimetric assessment of the process of epithelialization of the wound’s surface,bacterial load,morphometric examination of histological drugs for wounds and were made.ConclusionThe benefits of combination miramistinum and metronidazole,immobilized on a sodium salt of carboxymethylcellulose,compared with the drug levomecol.