期刊文献+
共找到1,667篇文章
< 1 2 84 >
每页显示 20 50 100
Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions
1
作者 Xinying Zhao Yuzhuo Jiang +5 位作者 Mengfan Wang Yunfei Huan Qiyang Cheng Yanzheng He Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期459-483,共25页
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the... Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future. 展开更多
关键词 Electrocatalytic nitrate reduction Electrocatalytic nitrite reduction ammonia synthesis Pollutant removal ELECTROSYNTHESIS
下载PDF
Enhanced nitrite electroreduction to ammonia via interfacial dual-site adsorption
2
作者 Xiaokang Chen Shengliang Zhai +4 位作者 Yi Tan Le Su Dong Zhai Wei-Qiao Deng Hao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期328-335,共8页
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t... The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator. 展开更多
关键词 Dual-site adsorption nitrite electroreduction ammonia Pd Hydrogenation
下载PDF
Promoting electroreduction of nitrite to ammonia over electron-deficient Pd modulated by rectifying Schottky contacts
3
作者 Shaobo Zhang Yabo Guo +4 位作者 Lu-Hua Zhang Zhihao Feng Bo Zhang Yaheng Wang Fengshou Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期524-530,共7页
Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate th... Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis. 展开更多
关键词 ELECTROCATALYTIC nitrite reduction reaction Electronic structure ammonia
下载PDF
Cu-based heterojunction catalysts for electrocatalytic nitrate reduction to ammonia
4
作者 HUANG Yitao GUAN Minghao +4 位作者 PEI Jiyuan SONG Yongyi WU Tao HOU Shuandi LU Anhui 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第12期1857-1864,I0008-I0010,共11页
Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they ... Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they still face challenges pertaining of poor stability and low activity,which hinder their further application.Herein,we present a Cu_(2)O/Cu heterojunction catalyst supported on nitrogen-doped porous carbon for nitrate reduction.High resolution transmission electron microscopy(HRTEM)and X-ray Diffraction(XRD)results confirm the presence of Cu_(2)O/Cu heterojunctions,which serve as an active phase in catalysis.The nitrogen-doped porous carbon as a carrier not only enhances the catalyst’s stability,but also facilitates the exposure and dispersion of active sites.At-1.29 V(vs.RHE),the maximum production rate of ammonia reaches 8.8 mg/(mg·h)with a Faradaic efficiency of 92.8%.This study also elucidates the effect of Cu_(2)O-to-Cu ratio in the heterojunction on catalytic performance,thereby providing valuable insights for designing efficient nitrate reduction catalysts for ammonia production. 展开更多
关键词 ELECTROCATALYSIS nitrate reduction ammonia copper-based catalysts
下载PDF
Electrocatalysts with atomic-level site for nitrate reduction to ammonia
5
作者 Shuai Yin Rong Cao +4 位作者 Yifan Han Jiachangli Shang Jing Zhang Wei Jiang Guigao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期642-668,共27页
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such... Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented. 展开更多
关键词 ammonia synthesis nitrate reduction Electrocatalysts with atomic-level site Reaction mechanism In-situ characterization techniques
下载PDF
Potential-dependent insights into the origin of high ammonia yield rate on copper surface via nitrate reduction:A computational and experimental study
6
作者 Yangge Guo Nannan Sun +5 位作者 Liuxuan Luo Xiaojing Cheng Xueying Chen Xiaohui Yan Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期272-281,共10页
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s... Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials. 展开更多
关键词 nitrate reduction to ammonia Copper surface Density functional theory Constant electrode potential method Experimental validation
下载PDF
Assessment of Nitrates and Nitrites in Borehole Water from the Southern and the Northern Region of Côte d’Ivoire (West Africa)
7
作者 Jean Stéphane Claon Kouassi Kouakou Serge +5 位作者 Sérikipré Laurent Seka M’Bassidjé Arsène N’Guettia Kossonou Roland Traoré Aïcha Djamanallico Joseph Kouadio Kouakou Luc 《Open Journal of Modern Hydrology》 CAS 2024年第2期87-105,共19页
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South... This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption. 展开更多
关键词 Drinking Water pH TURBIDITY TOC nitrateS nitriteS Health Effect
下载PDF
Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia
8
作者 XIE Meng LUO Wei QIU Pengpeng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期365-376,共12页
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we... Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR. 展开更多
关键词 ordered PtFe alloy mesoporous carbon nanofiber(mCNF) nitrate reduction reaction(NO3RR) ammonia(NH3)production reaction
下载PDF
Nitrate-nitrite-nitrosamines exposure and the risk of type 1 diabetes: A review of current data 被引量:3
9
作者 Zahra Bahadoran Asghar Ghasemi +2 位作者 Parvin Mirmiran Fereidoun Azizi Farzad Hadaegh 《World Journal of Diabetes》 SCIE CAS 2016年第18期433-440,共8页
The potential toxic effects of nitrate-nitrite-nitrosamine on pancreatic β cell have remained a controversial issue over the past two decades. In this study, we reviewed epidemiological studies investigated the assoc... The potential toxic effects of nitrate-nitrite-nitrosamine on pancreatic β cell have remained a controversial issue over the past two decades. In this study, we reviewed epidemiological studies investigated the associations between nitrate-nitrite-nitrosamines exposure, from both diet and drinking water to ascertain whether these compounds may contribute to development of type 1 diabetes. To identify relevant studies, a systematic search strategy of Pub Med, Scopus, and Science Direct was conducted using queries including the key words "nitrate", "nitrite", "nitrosamine" with "type 1 diabetes" or "insulin dependent diabetes mellitus". All searches were limited to studies published in English. Ecologic surveys, case-control and cohort studies have indicated conflicting results in relation to nitrate-nitrite exposure from drinking water and the risk of type 1 diabetes. A null, sometimes even negative association has been mainly reported in regions with a mean nitrate levels < 25 mg/L in drinking water, while increased risk of type 1 diabetes was observed in those with a maximum nitrate levels > 40-80 mg/L. Limited data are available regarding the potential diabetogenic effect of nitrite from drinking water, although there is evidence indicating dietary nitrite could be a risk factor for development of type 1 diabetes, an effect however that seems to be significant in a higher range of acceptable limit for nitrate/nitrite. Current data regarding dietary exposure of nitrosamine and development of type 1 diabetes is also inconsistent. Considering to an increasing trend of type 1 diabetes mellitus(T1DM) along with an elevated nitrate-nitrite exposure, additional research is critical to clarify potential harmful effects of nitrate-nitritenitrosamine exposure on β-cell autoimmunity and the risk of T1DM. 展开更多
关键词 nitrate nitrite NITROSAMINE Type 1 diabetes
下载PDF
NO Adsorption on Ag/Pt(110)-(1×2) Bimetallic Surfaces: Unexpected Formation of Nitrite/nitrate Surface Species
10
作者 李金兵 姜志全 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第6期735-740,I0004,共7页
NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An une... NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An unexpected formation of nitrite/nitrate surface species on Ag/Pt(110)-(1 ×2) bimetallic surfaces is observed, then decompose at elevated temperatures to form N2. However, such nitrite/nitrate surface species do not form on clean Pt(110) and Ag-Pt alloy surfaces upon NO exposure at room temperature. The formation of nitrite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is attributed to high reactivity of highly coordination-unsaturated Ag clusters and the synergetic effect between Ag clusters and Pt substrate. 展开更多
关键词 Nitric oxide Ag-Pt bimetallic surface nitrite/nitrate surface species Synergetic effect
下载PDF
Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites 被引量:4
11
作者 许恒龙 宋微波 +1 位作者 路璐 WARREN Alan 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第3期349-353,共5页
The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in... The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32x–9.51 (R2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h–LC50 value for ammonia was found to be 95.50 mg/L. A linear correla- tion between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equa- tion y=2.86x+0.89 (R2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85e-0.08x (R2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y = 127.15e-0.13x (R2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems. 展开更多
关键词 TOXICOLOGY ECOTOXICOLOGY toxicity ammonia nitrite ciliate protozoa Paramecium bursaria
下载PDF
Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions 被引量:1
12
作者 YANGXi ZHANMan-jun KONGLing-ren WANGLian-sheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期687-689,共3页
The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicyl... The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO- 3(10 mmol/L, pH=5) and NO- 2(10 mmol/L, pH=5) solutions under ultraviolet irradiation were at a same magnitude, 10 -15 mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO- 3 and NO- 2 respectively, all comparable to the results of previous studies. 展开更多
关键词 PHOTOCHEMISTRY hydroxyl radical salicylic acid nitrate nitrite
下载PDF
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:2
13
作者 Hui Liu Jingsha Li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming Li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 Electrocatalytic nitrate reduction ammonia production Core–shell heterostructure Copper oxides nanowire arrays Cobalt oxidesflocs
下载PDF
Modulating surface oxygen species via facet engineering for efficient conversion of nitrate to ammonia 被引量:1
14
作者 Wenye Zhong Zhiheng Gong +4 位作者 Zuyun He Nian Zhang Xiongwu Kang Xianwen Mao Yan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期211-221,I0007,共12页
Electrochemical reduction of nitrate,a common pollutant in aquatic environment,to valuable ammonia(NO3-RR) using renewably-sourced electricity has attracted widespread interests,with past efforts mainly focused on des... Electrochemical reduction of nitrate,a common pollutant in aquatic environment,to valuable ammonia(NO3-RR) using renewably-sourced electricity has attracted widespread interests,with past efforts mainly focused on designing electrocatalysts with high activity and selectivity.The detailed correlation between catalyst properties and NO3-RR kinetics,nevertheless,is still not fully understood.In this work,we modulate the surface oxygen species of Cu_(2)O via facet engineering,and systematically study the impact of these oxygen species on the NO_(3)^(-)RR activity.Combining advanced spectroscopic techniques,densi ty fu n ctional theory calculations and molecular dynamics simulations,we find that while oxygen vacancies on Cu_(2)O(111) surface promote the adsorption of reactants and reaction intermediates,hydroxyl groups effectively inhibit the side reaction of hydrogen evolution and facilitate the hydrogenation process of NO3-RR.These two effects work in concert to render Cu_(2)O(111) facet the highest NO3-RR activity relative to those from other facets.Our study provides critical insights into the synergistic effect of exposed facets and surface oxygen species on heterogeneous catalysis,and offers a generalizable,facet engineeringbased strategy for improving the performance of a variety of electrocatalysts important for renewable energy conversion. 展开更多
关键词 Facet engineering Oxygen vacancy Hydroxyl group Electrochemical nitrate reduction ammonia
下载PDF
A porous Co_(3)O_(4)-carbon paper electrode enabling nearly 100% electrocatalytic reduction of nitrate to ammonia 被引量:1
15
作者 Xufeng Rao Jiaying Yan +4 位作者 Koji Yokoyama Xiaolin Shao Chihiro Inoue Mei-fang Chien Yuyu Liu 《Materials Reports(Energy)》 2023年第3期41-47,共7页
Co_(3)O_(4) was synthesized on carbon paper(CP)using a facile method to improve electrochemical nitrate-toammonia conversion efficiency.The resulting Co_(3)O_(4)-CP electrode demonstrated an exceptional Faradaic effic... Co_(3)O_(4) was synthesized on carbon paper(CP)using a facile method to improve electrochemical nitrate-toammonia conversion efficiency.The resulting Co_(3)O_(4)-CP electrode demonstrated an exceptional Faradaic efficiency of almost 100% across a broad range of application conditions,with a peak NH3 yield of 3.43 mmol h^(-1) cm^(-2)(2.25 mol gCo^(-1) h^(-1)). 展开更多
关键词 nitrate ELECTROREDUCTION ammonia Catalyst Co_(3)O_(4)
下载PDF
A simple derivative spectrophotometric method for simultaneously detecting nitrate and nitrite in plasma treated water
16
作者 Liangsheng XU Huihong WU +2 位作者 Xin WANG Qiang CHEN Kostya(Ken)OSTRIKOV 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第8期105-112,共8页
A spectrophotometric technique is developed to simultaneously quantify nitrate and nitrite in plasma treated water.The measurement is based on examining the inflection points(wavelengths)in the derivative absorbance o... A spectrophotometric technique is developed to simultaneously quantify nitrate and nitrite in plasma treated water.The measurement is based on examining the inflection points(wavelengths)in the derivative absorbance of the nitrate or nitrite solution.At the inflection points of the pure nitrate solution,the derivative absorbance is zero and independent of the nitrate’s concentration,and thus the nitrite’s concentration in a mixed nitrate and nitrite solution can be obtained by using the Beer’s law at these points.The nitrate’s concentration can also be achieved from the inflection points of nitrite in the same manner.The relation between the tested substance’s(nitrate or nitrite)concentration and the second-or the third-order absorbances is obtained at these inflection points.Test measurements for mixed aqueous solutions of nitrate and nitrite with or without hydrogen peroxide confirm the reliability of this technique.We applied this technique to quantify the nitrate and nitrite generated in air plasma treated aqueous solutions.The results indicate that both nitrate and nitrite concentrations increase with the plasma treatment time,and the nitrite species is found to be generated prior to the nitrate species in the air plasma treated aqueous solution.Moreover,the production rate of total nitrogen species is independent of the solutions’p H value.These results are relevant to diverse applications of plasma activated solutions in materials processing,biotechnology,medicine and other fields. 展开更多
关键词 nitrate nitrite derivative spectrophotometry inflection point plasma treated water
下载PDF
Determination of Nitrate and Nitrite Contents of Syrian White Cheese
17
作者 Mohammad Amer Zamrik 《Pharmacology & Pharmacy》 2013年第2期171-175,共5页
The levels of nitrate and nitrite were determined in 102 samples of Syrian white cheese which represents the major production of total cheeses, manufactured mainly from cow’s milk and sheep’s milk in a less degree. ... The levels of nitrate and nitrite were determined in 102 samples of Syrian white cheese which represents the major production of total cheeses, manufactured mainly from cow’s milk and sheep’s milk in a less degree. Determination of nitrate and nitrite levels has been made by spectrophotometric method. The results for nitrate in cow’s and sheep’s milk cheeses reveal an average of 5.10 and 6.25 mg/kg, respectively. The results for nitrite in cow’s and sheep’s milk cheese were found to contain 1.24 and 1.31 mg/kg as an average, respectively. Several factors can play a role in the interpretation of the high nitrate content, such as livestock nutrition by forge with high nitrate load and water contaminated with nitrogen fertilizer and domestic effluents, primitive production techniques in many cases, and adding nitrate salts to prevent the growth of gas-producing bacteria caused by failing in the hygienic conditions. There is a necessity to apply strict controls to reduce the presence of these two anions in the Syrian white cheese. 展开更多
关键词 nitrate nitrite Copperized CADMIUM COLUMN Syrian WHITE CHEESE (SWC)
下载PDF
High-throughput mechanistic study of highly selective hydrogen-bonded organic frameworks for electrochemical nitrate reduction to ammonia
18
作者 Shuo Wang Yi Wang +2 位作者 Yunfan Fu Tianfu Liu Guoxiong Wang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期408-415,I0011,共9页
Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocataly... Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations. 展开更多
关键词 nitrate reduction reaction ammonia synthesis Hydrogen-bonded organic frameworks High-throughput calculations ELECTROCATALYSTS
下载PDF
Zeolite-mediated hybrid Cu^(+)/Cu~0 interface for electrochemical nitrate reduction to ammonia
19
作者 Jiabao Lv Angjian Wu +12 位作者 Liang Wang Yunhao Zhong Zhihao Zeng Qunxing Huang Xiaoqing Lin Hao Zhang Shaojun Liu Qian Liu Songqiang Zhu Xiaodong Li Jianhua Yan Zhifu Qi Hao Bin Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期136-143,I0005,共9页
The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for ... The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for electrochemical ammonia synthesis from nitrate reduction.To maintain the hybrid Cu^(+)/Cu~0 state at negative reaction potentials,hydrophilic zeolite is used to modify Cu/Cu_(2)O electrocatalyst,which demonstrates an impressive NH_(3) production rate of 41.65 mg h^(-1) cm^(-2)with ~100% Faradaic efficiency of ammonia synthesis at-0.6 V vs.RHE.In-situ Raman spectroscopy unveil the high activity originates from the zeolite reconstruction at the electrode–electrolyte interface,which protects the valence state of Cu~0/Cu^(+) site under negative potential and promotes electrochemical activity towards NH_(3) synthesis. 展开更多
关键词 Electrochemical nitrate reduction reaction ammonia synthesis In-situ Raman spectroscopy ZEOLITE Density functional theory
下载PDF
Seasonal Cycle Analysis of the Nitrate Nitrogen and Nitrite Nitrogen in the Bohai Sea
20
作者 石强 陈江麟 李崇德 《Marine Science Bulletin》 CAS 2002年第1期42-51,共10页
During 1985-1987, the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay. The concentration of nitrate nit... During 1985-1987, the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay. The concentration of nitrate nitrogen was highest in winter and lowest in summer while that of nitrite nitrogen was highest in autumn and lowest in spring. The seasonal variation of the concentration of nitrate nitrogen was maximum in the Laizhou Bay and the Bohai Bay while that of the concentration of nitrite nitrogen was maximum in the Liaodong Bay. There was a great difference in the concentration of nitrate nitrogen between the surface and the bottom in autumn and in the concentration of nitrite nitrogen between the surface and the bottom in summer. The main reason for the seasonal variations of the concentration of nitrate nitrogen and nitrite nitrogen was the marine biochemical process. The nitrate nitrogen and nitrite nitrogen in the Bohai Sea basically maintained a quasi-equilibrium state seasonal cycle. The quasi-equilibrium state seasonal cycle of nitrate nitrogen and nitrite nitrogen at the bottom was stable while that at the surface was liable to variations caused by other factors. 展开更多
关键词 nitrate nitrogen nitrite nitrogen quasi-equilibrium state seasonal cycle Bohai Sea
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部