Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,whic...Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.展开更多
The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia syn...The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia synthesis.While the process is thermodynamically feasible at ambient temperature and pressure,challenges such as the competing hydrogen evolution reaction,low nitrogen solubility in electrolytes,and the activation of inert dinitrogen(N_(2))gas adversely affect the performance of ammonia production.These hurdles result in low Faradaic efficiency and low ammonia production rate,which pose obstacles to the commercialisation of the process.Researchers have been actively designing and proposing various electrocatalysts to address these issues,but challenges still need to be resolved.A key strategy in electrocatalyst design lies in understanding the underlying mechanisms that govern the success or failure of the electrocatalyst in driving the electrochemical reaction.Through mechanistic studies,we gain valuable insights into the factors affecting the reaction,enabling us to propose optimised designs to overcome the barriers.This review aims to provide a comprehensive understanding of the various mechanisms involved in eNRR on the electrocatalyst surface.It delves into the various mechanisms such as dissociative,associative,Mars-van Krevelen,lithium-mediated nitrogen reduction and surface hydrogenation mechanisms of nitrogen reduction.By unravelling the intricacies of eNRR mechanisms and exploring promising avenues,we can pave the way for more efficient and commercially viable ammonia synthesis through this sustainable electrochemical process by designing an efficient electrocatalyst.展开更多
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul...The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions.展开更多
This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that t...This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals.展开更多
Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nont...Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nonthermal plasma catalysis approach is demonstrated as an effective powerto-chemicals conversion strategy for ammonia production.By sustaining a highly reactive environment,successful plasma-catalytic production of NH_(3) was achieved from the dissociation of N_(2) and H_(2)O under mild conditions.Plasma-induced vibrational excitation is found to decrease the N_(2) and H_(2)O dissociation barriers,with the presence of matched catalysts in the nonthermal plasma discharge reactor contributing significantly to molecular dissociation on the catalyst surface.Density functional theory calculations for the activation energy barrier for the dissociation suggest that ruthenium catalysts supported on magnesium oxide exhibit superior performance over other catalysts in NH_(3) production by lowering the activation energy for the dissociative adsorption of N_(2) down to 1.07 eV.The highest production rate,2.67 mmol gcat.^(-1) h^(-1),was obtained using ruthenium catalyst supported on magnesium oxide.This work highlights the potential of nonthermal plasma catalysis for the activation of renewable sources to serve as a new platform for sustainable ammonia production.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i...Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.展开更多
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ...Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.展开更多
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
Disulfide zirconium(ZrS_(2)) is a two-dimensional(2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties.However,mass production of high...Disulfide zirconium(ZrS_(2)) is a two-dimensional(2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties.However,mass production of high quality of ZrS_(2)nanosheets to realize their practical application remains a challenge.Here,we have successfully exfoliated the bulk ZrS_(2)powder with the thickness of micron into single and few-layer nanosheets through liquid-phase exfoliation in N-methylpyrrolidone(NMP) assisted via aliphatic amines as intercalators.It is found that the exfoliation yield is as high as 27.3%,which is the record value for the exfoliation of ZrS_(2)nanosheets from bulk ZrS_(2)powder,and 77.1% of ZrS_(2)nanosheets are 2-3 layers.The molecular geometric size and aliphatic amine basicity have important impact on the exfoliation.Furthermore,the ZrS_(2)nanosheets have been used as catalyst in the electrocatalytic dinitrogen reduction with the NH3yield of 57.75 μg h^(-1)mg_(cat.)^(-1),which is twice that by ZrS_(2)nanofibers reported in literature and three times that by the bulk ZrS_(2)powder.Therefore,the liquid phase exfoliation strategy reported here has great potential in mass production of ZrS_(2)nanosheets for high activity electrocatalysis.展开更多
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology i...Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology is to discover the catalysts with high selectivity and efficiency.In this work,the N_(2)-to-NH_(3)conversion on the functional MoS_(2)is fully investigated by density functional theory calculations since the layered MoS_(2)provides the ideal platform for the elaborating copies of the nitrogenase found in nature,wherein the functionalization is achieved via basal-adsorption,basal-substitution or edge-substitution of transition metal elements.Our results reveal that the edge-functionalization is a feasible strategy for the activity promotion;however,the basal-adsorption and basal-substitution separately suffer from the electrochemical instability and the NRR inefficiency.Specifically,MoS_(2)functionalized via edge W-substitution exhibits an exceptional activity.The energetically favored reaction pathway is through the distal pathway and a limiting potential is less than 0.20 V.Overall,this work escalates the rational design of the high-effective catalysts for nitrogen fixation and provides the explanation why the predicated catalyst have a good performance,paving the guidance for the experiments.展开更多
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit...In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.展开更多
Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transport...Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.展开更多
In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active ...In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active sites as exemplified by diatomic metals anchored graphdiyne via the combination of hierarchical high-throughput screening,first-principles calculations,and molecular dynamics simulations.Totally 43 highly efficient catalysts feature ultralow onset potentials(|U_(onset)|≤0.40 V)with Rh-Hf and Rh-Ta showing negligible onset potentials of 0 and-0.04 V,respectively.Extremely high catalytic activities of Rh-Hf and Rh-Ta can be ascribed to the synergistic effects.When forming heteronuclears,the combinations of relatively weak(such as Rh)and relatively strong(such as Hf or Ta)components usually lead to the optimal strengths of adsorption Gibbs free energies of reaction intermediates.The origin can be ascribed to the mediate d-band centers of Rh-Hf and Rh-Ta,which lead to the optimal adsorption strengths of intermediates,thereby bringing the high catalytic activities.Our work provides a new and general strategy toward the architecture of highly efficient catalysts not only for electrocatalytic nitrogen reduction reaction(eNRR)but also for other important reactions.We expect that our work will boost both experimental and theoretical efforts in this direction.展开更多
Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few...Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations.展开更多
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho...Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.展开更多
Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N ...Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N of plants is a serious obstacle to achieving these goals.Plant-based diagnosis can help farmers make better choices regarding the timing and amount of topdressing N fertilizer.Our objective was to evaluate a non-destructive assessment of rice N demands based on the relative SPAD value(RSPAD)due to leaf positional differences.In this study,two field experiments were conducted,including a field experiment of different N rates(Exp.I)and an experiment to evaluate the new strategy of nitrogen-split application based on RSPAD(Exp.II).The results showed that higher N inputs significantly increased grain yield in modern high yielding super rice,but at the expense of lower nitrogen use efficiency(NUE).The N nutrition index(NNI)can adequately differentiate situations of excessive,optimal,and insufficient N nutrition in rice,and the optimal N rate for modern high yielding rice is higher than conventional cultivars.The RSPAD is calculated as the SPAD value of the top fully expanded leaf vs.the value of the third leaf,which takes into account the non-uniform N distribution within a canopy.The RSPAD can be used as an indicator for higher yield and NUE,and guide better management of N fertilizer application.Furthermore,we developed a new strategy of nitrogen-split application based on RSPAD,in which the N rate was reduced by 18.7%,yield was increased by 1.7%,and the agronomic N use efficiency was increased by 27.8%,when compared with standard farmers'practices.This strategy of N fertilization shows great potential for ensuring high yielding and improving NUE at lower N inputs.展开更多
Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(...Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(15)N-PN) and dissolved nitrate(δ^(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)) in Zhanjiang Bay,a typical mariculture bay with a high level of eutrophication in South China,to investigate the changes in nitrogen sources and their cycling between the rainy and dry seasons.During the rainy season,the study found no significant relation between δ^(15)NPN and δ^(15)N-NO_(3)^(-)due to the impact of heavy rainfall and terrestrial erosion.In the upper bay,a slight nitrate loss and slightly higher δ_(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)values were observed,attributed to intense physical sedimentwater interactions.Despite some fluctuations,nitrate concentrations in the lower bay mainly aligned with the theoretical mixing line during the rainy season,suggesting that nitrate was primarily influenced by terrestrial erosion and that nitrate isotopes resembled the source.Consequently,the isotopic values of nitrate can be used for source apportionment in the rainy season.The results indicated that soil nitrogen(36%) and manure and sewage(33%) were the predominant nitrogen sources contributing to nitrogen loads during this period.In contrast,the dry season saw a deficient ammonium concentration(<0.2 μmol/L) in the bay,due to nearly complete consumption by phytoplankton during the red tide period.Additionally,the significant loss of nitrate and simultaneous increase in the stable isotopes of dissolved and particulate nitrogen suggest a strong coupling of assimilation and mineralization during the dry season.More active biogeochemical processes during the dry season may be related to decreased runoff and increased water retention time.Overall,our study illustrated the major seasonal nitrogen sources and their dynamics in Zhanjiang B ay,providing valuable insights for formulating effective policies to mitigate eutrophication in mariculture bays.展开更多
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu...Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR 2023 MD 059)the National Natural Science Foundation of China(No.41876135)。
文摘Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.
基金the Science and Engineering Research Board(SERB),Government of India for funding this work(Sanction No.EEQ/2021/001116)。
文摘The electrochemical nitrogen reduction reaction(eNRR)holds significant promise as a sustainable alternative to the conventional large-scale Haber Bosch process,offering a carbon footprint-free approach for ammonia synthesis.While the process is thermodynamically feasible at ambient temperature and pressure,challenges such as the competing hydrogen evolution reaction,low nitrogen solubility in electrolytes,and the activation of inert dinitrogen(N_(2))gas adversely affect the performance of ammonia production.These hurdles result in low Faradaic efficiency and low ammonia production rate,which pose obstacles to the commercialisation of the process.Researchers have been actively designing and proposing various electrocatalysts to address these issues,but challenges still need to be resolved.A key strategy in electrocatalyst design lies in understanding the underlying mechanisms that govern the success or failure of the electrocatalyst in driving the electrochemical reaction.Through mechanistic studies,we gain valuable insights into the factors affecting the reaction,enabling us to propose optimised designs to overcome the barriers.This review aims to provide a comprehensive understanding of the various mechanisms involved in eNRR on the electrocatalyst surface.It delves into the various mechanisms such as dissociative,associative,Mars-van Krevelen,lithium-mediated nitrogen reduction and surface hydrogenation mechanisms of nitrogen reduction.By unravelling the intricacies of eNRR mechanisms and exploring promising avenues,we can pave the way for more efficient and commercially viable ammonia synthesis through this sustainable electrochemical process by designing an efficient electrocatalyst.
基金financially supported in China by the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province (No. JC2018004)
文摘The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions.
基金sponsored by the National Natural Science Foundation of China(52176193)the National Key Research and Development Program of China(2019YFD1100602)+1 种基金the Shandong Provincial Natural Science Foundation,China(ZR2020ME184)the SDUT & Zhangdian City Integration Development Project(2021JSCG0013)。
文摘This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals.
基金partially supported by the Australian Research Council(ARC)the National Science Fund for Distinguished Young Scholars(grant number 51925703)。
文摘Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nonthermal plasma catalysis approach is demonstrated as an effective powerto-chemicals conversion strategy for ammonia production.By sustaining a highly reactive environment,successful plasma-catalytic production of NH_(3) was achieved from the dissociation of N_(2) and H_(2)O under mild conditions.Plasma-induced vibrational excitation is found to decrease the N_(2) and H_(2)O dissociation barriers,with the presence of matched catalysts in the nonthermal plasma discharge reactor contributing significantly to molecular dissociation on the catalyst surface.Density functional theory calculations for the activation energy barrier for the dissociation suggest that ruthenium catalysts supported on magnesium oxide exhibit superior performance over other catalysts in NH_(3) production by lowering the activation energy for the dissociative adsorption of N_(2) down to 1.07 eV.The highest production rate,2.67 mmol gcat.^(-1) h^(-1),was obtained using ruthenium catalyst supported on magnesium oxide.This work highlights the potential of nonthermal plasma catalysis for the activation of renewable sources to serve as a new platform for sustainable ammonia production.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金supported by the Climate Change Response Project (NRF-2019M1A2A2065612)the Brainlink Project (NRF2022H1D3A3A01081140)+3 种基金the NRF-2021R1A4A3027878 and the No. RS-2023-00212273 funded by the Ministry of Science and ICT of Korea via National Research Foundationresearch funds from Hanhwa Solutions Chemicals (1.220029.01)UNIST (1.190013.01)supported by the Institute for Basic Science (IBS-R019-D1)。
文摘Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.
基金funded by the National Natural Science Foundation of China (32171746,31870522,42077450,32371786)the leading talents of basic research in Henan Province+3 种基金Funding for Characteristic and Backbone Forestry Discipline Group of Henan Provincethe Scientific Research Foundation of Henan Agricultural University (30500854)Research Funds for overseas returnee in Henan Province,Chinasupported by National Key Research and Development Program of China (2019YFE0117000)。
文摘Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金the financial supports from the National Natural Science Foundation of China (No.U1704251 and 21733011)the National Key Research and Development Program of China (2017YFA0403101)+1 种基金Natural Science Foundation of Henan province (No.202300410220)the 111 Project (No.D17007)。
文摘Disulfide zirconium(ZrS_(2)) is a two-dimensional(2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties.However,mass production of high quality of ZrS_(2)nanosheets to realize their practical application remains a challenge.Here,we have successfully exfoliated the bulk ZrS_(2)powder with the thickness of micron into single and few-layer nanosheets through liquid-phase exfoliation in N-methylpyrrolidone(NMP) assisted via aliphatic amines as intercalators.It is found that the exfoliation yield is as high as 27.3%,which is the record value for the exfoliation of ZrS_(2)nanosheets from bulk ZrS_(2)powder,and 77.1% of ZrS_(2)nanosheets are 2-3 layers.The molecular geometric size and aliphatic amine basicity have important impact on the exfoliation.Furthermore,the ZrS_(2)nanosheets have been used as catalyst in the electrocatalytic dinitrogen reduction with the NH3yield of 57.75 μg h^(-1)mg_(cat.)^(-1),which is twice that by ZrS_(2)nanofibers reported in literature and three times that by the bulk ZrS_(2)powder.Therefore,the liquid phase exfoliation strategy reported here has great potential in mass production of ZrS_(2)nanosheets for high activity electrocatalysis.
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
基金financial support from the National Natural Science Foundation of China(21503097,52130101,51701152,21806023,and 51702345)China Scholarship Council(202008320215).
文摘Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology is to discover the catalysts with high selectivity and efficiency.In this work,the N_(2)-to-NH_(3)conversion on the functional MoS_(2)is fully investigated by density functional theory calculations since the layered MoS_(2)provides the ideal platform for the elaborating copies of the nitrogenase found in nature,wherein the functionalization is achieved via basal-adsorption,basal-substitution or edge-substitution of transition metal elements.Our results reveal that the edge-functionalization is a feasible strategy for the activity promotion;however,the basal-adsorption and basal-substitution separately suffer from the electrochemical instability and the NRR inefficiency.Specifically,MoS_(2)functionalized via edge W-substitution exhibits an exceptional activity.The energetically favored reaction pathway is through the distal pathway and a limiting potential is less than 0.20 V.Overall,this work escalates the rational design of the high-effective catalysts for nitrogen fixation and provides the explanation why the predicated catalyst have a good performance,paving the guidance for the experiments.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000600)the National Natural Science Foundation of China(Grant No.32070376)。
文摘In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.
基金the financial support provided by the Canada Research Chair program and the Natural Science and Engineering Research Council of Canada (NSERC)
文摘Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.
基金support from the National Natural Science Foundation of China(22073033,21873032,21673087,21903032)startup fund(2006013118 and 3004013105)from Huazhong University of Science and Technology+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyRCPY116)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)
文摘In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active sites as exemplified by diatomic metals anchored graphdiyne via the combination of hierarchical high-throughput screening,first-principles calculations,and molecular dynamics simulations.Totally 43 highly efficient catalysts feature ultralow onset potentials(|U_(onset)|≤0.40 V)with Rh-Hf and Rh-Ta showing negligible onset potentials of 0 and-0.04 V,respectively.Extremely high catalytic activities of Rh-Hf and Rh-Ta can be ascribed to the synergistic effects.When forming heteronuclears,the combinations of relatively weak(such as Rh)and relatively strong(such as Hf or Ta)components usually lead to the optimal strengths of adsorption Gibbs free energies of reaction intermediates.The origin can be ascribed to the mediate d-band centers of Rh-Hf and Rh-Ta,which lead to the optimal adsorption strengths of intermediates,thereby bringing the high catalytic activities.Our work provides a new and general strategy toward the architecture of highly efficient catalysts not only for electrocatalytic nitrogen reduction reaction(eNRR)but also for other important reactions.We expect that our work will boost both experimental and theoretical efforts in this direction.
基金Natural Sciences and Engineering Research Council of Canada (NSERC)Fonds de Recherche du Québec-Nature et Technologies (FRQNT)+3 种基金Centre Québécois sur les Materiaux Fonctionnels (CQMF)Institut National de la Recherche Scientifique (INRS)École de Technologie Supérieure (ÉTS)King Abdullah University of Science and Technology (KAUST)。
文摘Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations.
基金financially supported by the National Key Technology Research and Development Program of China(2021YFD1901001-08)the Key Scientific and Technological Project of Henan Provincial Education Department,China(232102111119)。
文摘Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.
基金finically supported by the National Key Research and Development Program of China(2022YFD2300304)the R&D Foundation of Jiangsu Province,China(BE2022425)the Priority Academic Program Development of Jiangsu Higher-Education Institutions,China(PAPD)。
文摘Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N of plants is a serious obstacle to achieving these goals.Plant-based diagnosis can help farmers make better choices regarding the timing and amount of topdressing N fertilizer.Our objective was to evaluate a non-destructive assessment of rice N demands based on the relative SPAD value(RSPAD)due to leaf positional differences.In this study,two field experiments were conducted,including a field experiment of different N rates(Exp.I)and an experiment to evaluate the new strategy of nitrogen-split application based on RSPAD(Exp.II).The results showed that higher N inputs significantly increased grain yield in modern high yielding super rice,but at the expense of lower nitrogen use efficiency(NUE).The N nutrition index(NNI)can adequately differentiate situations of excessive,optimal,and insufficient N nutrition in rice,and the optimal N rate for modern high yielding rice is higher than conventional cultivars.The RSPAD is calculated as the SPAD value of the top fully expanded leaf vs.the value of the third leaf,which takes into account the non-uniform N distribution within a canopy.The RSPAD can be used as an indicator for higher yield and NUE,and guide better management of N fertilizer application.Furthermore,we developed a new strategy of nitrogen-split application based on RSPAD,in which the N rate was reduced by 18.7%,yield was increased by 1.7%,and the agronomic N use efficiency was increased by 27.8%,when compared with standard farmers'practices.This strategy of N fertilization shows great potential for ensuring high yielding and improving NUE at lower N inputs.
基金The National Natural Science Foundation of China under contract Nos 42276047, 92158201 and U1901213the Entrepreneurship Project of Shantou under contract No.2021112176541391the Scientific Research Start-Up Foundation of Shantou University under contract No.NTF20006。
文摘Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(15)N-PN) and dissolved nitrate(δ^(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)) in Zhanjiang Bay,a typical mariculture bay with a high level of eutrophication in South China,to investigate the changes in nitrogen sources and their cycling between the rainy and dry seasons.During the rainy season,the study found no significant relation between δ^(15)NPN and δ^(15)N-NO_(3)^(-)due to the impact of heavy rainfall and terrestrial erosion.In the upper bay,a slight nitrate loss and slightly higher δ_(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)values were observed,attributed to intense physical sedimentwater interactions.Despite some fluctuations,nitrate concentrations in the lower bay mainly aligned with the theoretical mixing line during the rainy season,suggesting that nitrate was primarily influenced by terrestrial erosion and that nitrate isotopes resembled the source.Consequently,the isotopic values of nitrate can be used for source apportionment in the rainy season.The results indicated that soil nitrogen(36%) and manure and sewage(33%) were the predominant nitrogen sources contributing to nitrogen loads during this period.In contrast,the dry season saw a deficient ammonium concentration(<0.2 μmol/L) in the bay,due to nearly complete consumption by phytoplankton during the red tide period.Additionally,the significant loss of nitrate and simultaneous increase in the stable isotopes of dissolved and particulate nitrogen suggest a strong coupling of assimilation and mineralization during the dry season.More active biogeochemical processes during the dry season may be related to decreased runoff and increased water retention time.Overall,our study illustrated the major seasonal nitrogen sources and their dynamics in Zhanjiang B ay,providing valuable insights for formulating effective policies to mitigate eutrophication in mariculture bays.
基金supported by grants from the National Natural Science Foundation of China(32172340)。
文摘Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research.