Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research...The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH KTB operating conditions were modeled and analyzed using this model. Besides, proceeded from the two resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed operating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for determining and optimizing the technologies of the RH and RH KTB refining and desulphurization by powder injection and blowing in the RH refining and for controlling the processes.展开更多
Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simu...Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simultaneously to transform sulphide minerals into useful by-products. To achieve desirable sulphur removal rate and efficiency, central composite design was adopted as a response surface methodology for the optimization and evaluation of the process. A full-quadratic polynomial equation between the sulphur removal and the studied parameters was established to assess the behaviour of sulphur removal as a function of the factors and to predict the results in various conditions. The optimum conditions were obtained based on the variance tests and response surface plots, from which the optimized ranges for each factor resulting in the best response (corresponding to the highest percentage of desulphurization) could be then achieved. The results show that most desirable conditions are atmospheric leaching in 1.39 mol/dm3 nitric acid and 0.88 mol/dm3 sulphuric acid for 47 h. The designed process under the optimized desulphurization conditions was applied to a real iron ore concentrate. More than 75% of the total sulphur was removed via the leaching process. In addition to the desulphurization, the conversion of sulphide-bearing minerals into useful by-products, extraction of valuable metals, and executing the process under atmospheric conditions are the other advantages of the proposed method.展开更多
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
文摘The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH KTB operating conditions were modeled and analyzed using this model. Besides, proceeded from the two resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed operating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for determining and optimizing the technologies of the RH and RH KTB refining and desulphurization by powder injection and blowing in the RH refining and for controlling the processes.
文摘Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simultaneously to transform sulphide minerals into useful by-products. To achieve desirable sulphur removal rate and efficiency, central composite design was adopted as a response surface methodology for the optimization and evaluation of the process. A full-quadratic polynomial equation between the sulphur removal and the studied parameters was established to assess the behaviour of sulphur removal as a function of the factors and to predict the results in various conditions. The optimum conditions were obtained based on the variance tests and response surface plots, from which the optimized ranges for each factor resulting in the best response (corresponding to the highest percentage of desulphurization) could be then achieved. The results show that most desirable conditions are atmospheric leaching in 1.39 mol/dm3 nitric acid and 0.88 mol/dm3 sulphuric acid for 47 h. The designed process under the optimized desulphurization conditions was applied to a real iron ore concentrate. More than 75% of the total sulphur was removed via the leaching process. In addition to the desulphurization, the conversion of sulphide-bearing minerals into useful by-products, extraction of valuable metals, and executing the process under atmospheric conditions are the other advantages of the proposed method.