To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was...To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.展开更多
The nitrogen transformation in maize soil after application of different organic manure was studied. The nitrogen mineralization in surface soil, NO - 3-N dynamics and distribution in soil profile, and N 2O emissio...The nitrogen transformation in maize soil after application of different organic manure was studied. The nitrogen mineralization in surface soil, NO - 3-N dynamics and distribution in soil profile, and N 2O emission were investigated. Eight treatments were laid out randomizing with three replications in 24 plots: maize plantation without fertilizer(CK1), bare soil without maize plantation and fertilization(CK2), swine manure(S1, S2), poultry manure(P1, P2), and cattle manure(C1, C2). Three manures were applied at two application levels(15 t/hm 2 and 30 t/hm 2). The results indicated that NH + 4-N in surface soil showed the same temporal pattern without much variation among different treatments. But NO - 3-N in the same layer exhibited large temporal pattern in all treatments, which was mainly due to its easy eluviations of NO - 3-N in soil, its transformation to N 2O and the influence of precipitation. The distribution of NO - 3-N in the soil profile during maize growing season showed the leaching tendency from surface soil to subsoil, which was different among the treatments. The poultry treatments showed the largest leaching tendency. The study also revealed that the emissions of N 2O were affected by the application of organic manures in the order of P2>S2>C2>P1>S1>C1>CK1>CK2. All these results showed that organic manure applications significantly affect nitrogen transformation and distribution in maize soil. Considering N 2O emission and NO - 3-N leaching, the management of organic manure in the agriculture needs further studies.展开更多
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage se...In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.展开更多
文摘To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.
文摘The nitrogen transformation in maize soil after application of different organic manure was studied. The nitrogen mineralization in surface soil, NO - 3-N dynamics and distribution in soil profile, and N 2O emission were investigated. Eight treatments were laid out randomizing with three replications in 24 plots: maize plantation without fertilizer(CK1), bare soil without maize plantation and fertilization(CK2), swine manure(S1, S2), poultry manure(P1, P2), and cattle manure(C1, C2). Three manures were applied at two application levels(15 t/hm 2 and 30 t/hm 2). The results indicated that NH + 4-N in surface soil showed the same temporal pattern without much variation among different treatments. But NO - 3-N in the same layer exhibited large temporal pattern in all treatments, which was mainly due to its easy eluviations of NO - 3-N in soil, its transformation to N 2O and the influence of precipitation. The distribution of NO - 3-N in the soil profile during maize growing season showed the leaching tendency from surface soil to subsoil, which was different among the treatments. The poultry treatments showed the largest leaching tendency. The study also revealed that the emissions of N 2O were affected by the application of organic manures in the order of P2>S2>C2>P1>S1>C1>CK1>CK2. All these results showed that organic manure applications significantly affect nitrogen transformation and distribution in maize soil. Considering N 2O emission and NO - 3-N leaching, the management of organic manure in the agriculture needs further studies.
基金Supported by the State Key Basic Research and Development Plan of China (2006CB403406), the National Natural Science Foundation of China (50339030, 50579066) and Hong Kong Research Grants Council (HKBU 2149/04M HKBU 2165/05M).
文摘In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.