Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c...Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.展开更多
Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the inductio...Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the induction time was 5 min, and the hydrate formation process finished in 1 h at 4.5 ℃ and 4.01 MPa. The hydrate formation rate constant reached the maximum of 1.84× 10^-7 molZ/(s.J) with the feed pressure of 7.30 MPa. The CO2 recovery was about 45 % in the feed pressure range from 4.30 to 7.30 MPa. Under the feed pressure of 4.30 MPa, the maximum separation factor and CO2 concentration in hydrate phase were 7.3 and 38.2 mol%, respectively. The results demonstrated that TBAB accelerated hydrate formation and enriched CO2 in hydrate phase under the gentle condition.展开更多
Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised g...Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application.展开更多
Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems...Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ATp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.展开更多
The Co(II) complex I and ammonium salt II were synthesized from the direct reaction of 1,2-ethylenediamine and cobaltous acetate tetrahydrate and manganese acetate tetrahydrate in anhydrous ethanol. Treatment of N,N...The Co(II) complex I and ammonium salt II were synthesized from the direct reaction of 1,2-ethylenediamine and cobaltous acetate tetrahydrate and manganese acetate tetrahydrate in anhydrous ethanol. Treatment of N,N'-bis(salicylidene)ethylenediamine with Cu(OAc)2·H2O results in the formation of Cu(II) complex III. C14H37CoNaO8 (I): triclinic, space group P1, a = 8.6296(12), b = 12.0291(17), c = 12.1108(17) A, α = 75.335(2), β = 69.991(2), γ = 72.248(2)°, V= 1109.4(3) A3, Z = 2, ρcaloa = 1.342 g/cm3, the final R= 0.0342 for 4817 observed reflections with I 〉 2σ(I) and Rw = 0.1263 for all data. C6H16N204 (II): space group P1, a = 5.5513(10), b = 5.5589(11), c = 7.4437(14) A, α = 94.332(4), β = 104.497(4), γ = 103.487(4)°,V= 214.06(7) A3, Z = 1, ρcalcd = 1.398 g/cm3, the final R = 0.0431 for 829 observed reflections with I〉 2σ(I) and Rw = 0.1263 for all data. C14H37CuN40 (III), space group P21/n, a = 9.050(9), b = 18.434(17), c = 11.659(11) A, β = 107.134(19)°, V= 1859(3) A3, Z = 4, ρcalcd =1.443 g/cm3, the final R = 0.0616 for 3308 observed reflections (O 〉 2σ(I)) and Rw = 0.1229 for all data. Their structures were all determined by X-ray diffraction, elemental analysis and IR.展开更多
先用甲醛-甲酸法(eschweiler-clarke反应)合成N,N-二甲基壳聚糖(DMC),再与溴代烷进行Hoffman烷基化反应制备了N-十二烷基-N,N-二甲基壳聚糖季铵盐(DODMC)和N-十六烷基-N,N-二甲基壳聚糖季铵盐(HDMC),用FT-IR、1 H NMR、EA、TG等对产物...先用甲醛-甲酸法(eschweiler-clarke反应)合成N,N-二甲基壳聚糖(DMC),再与溴代烷进行Hoffman烷基化反应制备了N-十二烷基-N,N-二甲基壳聚糖季铵盐(DODMC)和N-十六烷基-N,N-二甲基壳聚糖季铵盐(HDMC),用FT-IR、1 H NMR、EA、TG等对产物进行表征。抗菌实验结果表明所合成产物具有较好的抗菌活性,对革兰氏阳性菌S.aureus的抗菌活性优于革兰氏阴性菌E.coli,抗菌活性随着烷基链长度的增加而增强;产物在pH值=5.5比在pH值=7.2条件下表现出更好的抗菌活性;在碱性及中性条件下,HDMC的抗菌活性随着季铵化度的提高而提高,而在酸性条件下抗菌活性则随着季铵化度提高而降低。展开更多
文摘Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.
文摘Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the induction time was 5 min, and the hydrate formation process finished in 1 h at 4.5 ℃ and 4.01 MPa. The hydrate formation rate constant reached the maximum of 1.84× 10^-7 molZ/(s.J) with the feed pressure of 7.30 MPa. The CO2 recovery was about 45 % in the feed pressure range from 4.30 to 7.30 MPa. Under the feed pressure of 4.30 MPa, the maximum separation factor and CO2 concentration in hydrate phase were 7.3 and 38.2 mol%, respectively. The results demonstrated that TBAB accelerated hydrate formation and enriched CO2 in hydrate phase under the gentle condition.
文摘Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application.
基金supported by the the Industrial Consultancy and Sponsored Research (ICSR),Indian Institute of Technology Madras,Chennai (Project Number OEC/10 11/530/NFSC/JITE)the National Institute of Ocean Technology (NIOT),Chennai,India (Project Number OEC/10-11/105/NIOT/JITE)
文摘Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ATp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.
文摘The Co(II) complex I and ammonium salt II were synthesized from the direct reaction of 1,2-ethylenediamine and cobaltous acetate tetrahydrate and manganese acetate tetrahydrate in anhydrous ethanol. Treatment of N,N'-bis(salicylidene)ethylenediamine with Cu(OAc)2·H2O results in the formation of Cu(II) complex III. C14H37CoNaO8 (I): triclinic, space group P1, a = 8.6296(12), b = 12.0291(17), c = 12.1108(17) A, α = 75.335(2), β = 69.991(2), γ = 72.248(2)°, V= 1109.4(3) A3, Z = 2, ρcaloa = 1.342 g/cm3, the final R= 0.0342 for 4817 observed reflections with I 〉 2σ(I) and Rw = 0.1263 for all data. C6H16N204 (II): space group P1, a = 5.5513(10), b = 5.5589(11), c = 7.4437(14) A, α = 94.332(4), β = 104.497(4), γ = 103.487(4)°,V= 214.06(7) A3, Z = 1, ρcalcd = 1.398 g/cm3, the final R = 0.0431 for 829 observed reflections with I〉 2σ(I) and Rw = 0.1263 for all data. C14H37CuN40 (III), space group P21/n, a = 9.050(9), b = 18.434(17), c = 11.659(11) A, β = 107.134(19)°, V= 1859(3) A3, Z = 4, ρcalcd =1.443 g/cm3, the final R = 0.0616 for 3308 observed reflections (O 〉 2σ(I)) and Rw = 0.1229 for all data. Their structures were all determined by X-ray diffraction, elemental analysis and IR.
文摘先用甲醛-甲酸法(eschweiler-clarke反应)合成N,N-二甲基壳聚糖(DMC),再与溴代烷进行Hoffman烷基化反应制备了N-十二烷基-N,N-二甲基壳聚糖季铵盐(DODMC)和N-十六烷基-N,N-二甲基壳聚糖季铵盐(HDMC),用FT-IR、1 H NMR、EA、TG等对产物进行表征。抗菌实验结果表明所合成产物具有较好的抗菌活性,对革兰氏阳性菌S.aureus的抗菌活性优于革兰氏阴性菌E.coli,抗菌活性随着烷基链长度的增加而增强;产物在pH值=5.5比在pH值=7.2条件下表现出更好的抗菌活性;在碱性及中性条件下,HDMC的抗菌活性随着季铵化度的提高而提高,而在酸性条件下抗菌活性则随着季铵化度提高而降低。