[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transpor...[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.展开更多
RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them ...RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northern blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.展开更多
Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix ...Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter.展开更多
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question...Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.展开更多
The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anae...The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH. The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils. A variation tendency was also found in the δ 15N of amino-acid N in the hydrolysates of soils. The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons, indicating that the increase of δ 15N in the soil horizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.展开更多
It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that ...It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.展开更多
High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying...High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying functional bacteria in tannery sludge contaminated soils,a series of contaminated soil culture experiments were conducted in this study.The contents of ammonium nitrogen(as NH_(4)^(+)-N),nitrite nitrogen(as NO_(2)^(−)-N)and nitrate nitrogen(as NO_(3)^(−)-N)were analyzed during the culture period under different conditions of pollution load,soil particle and redox environment.Sigmodial equation was used to interpret the change of NO_(3)^(−)-N with time in contaminated soils.The abundance variations of nitrifying functional genes(amoA and nxrA)were also detected using the real-time quantitative fluorescence PCR method.The results show that the nitrification of NH_(4)^(+)-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load,finer particle size and more oxidizing environment.The sigmodial equation well fitted the dynamic accumulation curve of the NO_(3)^(−)-N content in the tannery sludge contaminated soils.The Cr(III)content increased with increasing pollution load,which inhibited the reproduction and activity of nitrifying bacteria in the soils,especially in coarse-grained soil.The accumulation of NO_(2)^(−)-N contents became more obvious with the increase of pollution load in the fine sand,and only 41.5%of the NH_(4)^(+)-N was transformed to NO_(3)^(−)-N.The redox environment was the main factor affecting nitrification process in the soil.Compared to the aerobic soil environment,the transformation of NH_(4)^(+)-N was significantly inhibited under anaerobic incubation condition,and the NO_(3)^(−)-N contents decreased by 37.2%,61.9%and 91.9%under low,medium and high pollution loads,respectively.Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand.Moreover,the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment.The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.展开更多
Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in ...Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in the red seaweed Pyropia yezoensis causes senescence-like discoloration. In this study, we identified five genes in P. yezoensis encoding AMT domain-containing proteins, which were phylogenetically categorized into the AMT1 subfamily. We also found a gene encoding a Rhesus protein (Rh) that was related to, but diverged from, AMTs. Moreover, our phylogenetic analysis showed that AMT domain-containing proteins from micro- and macro-algae belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in algae. Gene expression analyses revealed the presence of gametophyte- and sporophyte-specific AMT1 genes that were up-regulated transiently and continually, respectively, under nitrogen-deficient conditions. In addition, up-regulated sporophyte-specific gene expression was suppressed when nitrogen was resupplied. Accordingly, an expansion of the ancient AMT gene has produced AMT1 functional variants differing in temporal and nitrogen starvation-inducible expression patterns during the life cycle of P. yezoensis. These findings help elucidate the unique nutrition starvation responses involving functionally diverse AMT1 and Rh subfamilies in red seaweed.展开更多
基金Supported by Major Project of Water Pollution Control and Treatment(2009ZX07424-002)~~
文摘[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.
文摘RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northern blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.
文摘Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter.
基金supported in part by the National Basic Research Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
基金Project supported by the National Natural Science Foundation of China.
文摘The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH. The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils. A variation tendency was also found in the δ 15N of amino-acid N in the hydrolysates of soils. The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons, indicating that the increase of δ 15N in the soil horizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.
文摘It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.
基金supported jointly by Natural Science Foundation of Hebei Province(D2020504003)National Key Research and Development Program of China(No.2019YFC1805300).
文摘High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater.To study the transformation mechanism of NH_(4)^(+)-N by nitrifying functional bacteria in tannery sludge contaminated soils,a series of contaminated soil culture experiments were conducted in this study.The contents of ammonium nitrogen(as NH_(4)^(+)-N),nitrite nitrogen(as NO_(2)^(−)-N)and nitrate nitrogen(as NO_(3)^(−)-N)were analyzed during the culture period under different conditions of pollution load,soil particle and redox environment.Sigmodial equation was used to interpret the change of NO_(3)^(−)-N with time in contaminated soils.The abundance variations of nitrifying functional genes(amoA and nxrA)were also detected using the real-time quantitative fluorescence PCR method.The results show that the nitrification of NH_(4)^(+)-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load,finer particle size and more oxidizing environment.The sigmodial equation well fitted the dynamic accumulation curve of the NO_(3)^(−)-N content in the tannery sludge contaminated soils.The Cr(III)content increased with increasing pollution load,which inhibited the reproduction and activity of nitrifying bacteria in the soils,especially in coarse-grained soil.The accumulation of NO_(2)^(−)-N contents became more obvious with the increase of pollution load in the fine sand,and only 41.5%of the NH_(4)^(+)-N was transformed to NO_(3)^(−)-N.The redox environment was the main factor affecting nitrification process in the soil.Compared to the aerobic soil environment,the transformation of NH_(4)^(+)-N was significantly inhibited under anaerobic incubation condition,and the NO_(3)^(−)-N contents decreased by 37.2%,61.9%and 91.9%under low,medium and high pollution loads,respectively.Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand.Moreover,the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment.The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.
文摘Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in the red seaweed Pyropia yezoensis causes senescence-like discoloration. In this study, we identified five genes in P. yezoensis encoding AMT domain-containing proteins, which were phylogenetically categorized into the AMT1 subfamily. We also found a gene encoding a Rhesus protein (Rh) that was related to, but diverged from, AMTs. Moreover, our phylogenetic analysis showed that AMT domain-containing proteins from micro- and macro-algae belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in algae. Gene expression analyses revealed the presence of gametophyte- and sporophyte-specific AMT1 genes that were up-regulated transiently and continually, respectively, under nitrogen-deficient conditions. In addition, up-regulated sporophyte-specific gene expression was suppressed when nitrogen was resupplied. Accordingly, an expansion of the ancient AMT gene has produced AMT1 functional variants differing in temporal and nitrogen starvation-inducible expression patterns during the life cycle of P. yezoensis. These findings help elucidate the unique nutrition starvation responses involving functionally diverse AMT1 and Rh subfamilies in red seaweed.