Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle...Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.展开更多
Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix ...Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter.展开更多
Over the past two decades,it has become increasingly apparent that early Mars may once have been warmer,wetter and more habitable for microbial life than it is today,which has spurred discussions about potential biosi...Over the past two decades,it has become increasingly apparent that early Mars may once have been warmer,wetter and more habitable for microbial life than it is today,which has spurred discussions about potential biosignatures that may be preserved in Martian sediments.An impediment to this line of research is the pervasive oxidation of Mars’surface due to photochemical oxidants that have likely destroyed remnants of organic matter.Here,we investigate whether nitrogen(N)transferred from biomass to phyllosilicate minerals during diagenesis can be preserved in oxidized mudrocks.We investigate two sequences of terrestrial Proterozoic red beds,namely the Sibley Group(1.4 Ga)in Canada and the Stoer Group(1.2 Ga)in Scotland,and we find enrichments in authigenic N in the range of several tens of ppm in both units.The highest concentrations(ca.100 ppm on average)are found in the most desiccated red beds of the Stoer Group,concurrent with enrichments in potassium(K).We discuss similarities and differences between the two sets of rocks with regards to salinity,pH,biological productivity and K-metasomatism,and we conclude that the ideal mechanism for the preservation of biogenic N in red beds may be in-situ release of ammonium from microbial mats into the clay substrate,possibly facilitated by early diagenetic,biologically induced illitization.Illite and smectite have been observed on Mars,and experiments suggest that Martian waters contained moderate amounts of dissolved K.Hence,it is conceivable that a similar K and N enrichment process could have occurred as to what we document for the Proterozoic,preserving evidence of life that may have survived to the modern day.展开更多
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei...Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture.展开更多
Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in ...Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in the red seaweed Pyropia yezoensis causes senescence-like discoloration. In this study, we identified five genes in P. yezoensis encoding AMT domain-containing proteins, which were phylogenetically categorized into the AMT1 subfamily. We also found a gene encoding a Rhesus protein (Rh) that was related to, but diverged from, AMTs. Moreover, our phylogenetic analysis showed that AMT domain-containing proteins from micro- and macro-algae belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in algae. Gene expression analyses revealed the presence of gametophyte- and sporophyte-specific AMT1 genes that were up-regulated transiently and continually, respectively, under nitrogen-deficient conditions. In addition, up-regulated sporophyte-specific gene expression was suppressed when nitrogen was resupplied. Accordingly, an expansion of the ancient AMT gene has produced AMT1 functional variants differing in temporal and nitrogen starvation-inducible expression patterns during the life cycle of P. yezoensis. These findings help elucidate the unique nutrition starvation responses involving functionally diverse AMT1 and Rh subfamilies in red seaweed.展开更多
The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anae...The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH. The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils. A variation tendency was also found in the δ 15N of amino-acid N in the hydrolysates of soils. The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons, indicating that the increase of δ 15N in the soil horizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.展开更多
In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration sho...In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration showed negligible effect on efficiencies for removal of nitrate and COD.However,the ammonium ions removal rate was moderately reduced,when the influent SMX concentration in wastewater reached 6 mg/L.Total nitrogen removal efficiency remained as high as 76.77%towards the day 158 at the end of experiment.Candidatus_Brocadia and Candidatus_Kuenenia were the functional anammox strains.The unclassified_f__Rhodobacteraceae sp.was predominant heterotrophic denitrifying strain in the studied reactor.The concentrations of soluble extracellular polymeric substances in sludge obviously increased from 16.76 mg/g VSS to 32.31 mg/g VSS,which might protect the nitrogen removal strains from high-concentration SMX.This result provides a theoretical and technical foundation for the application of denitrifying ammonium oxidation process in treating sulfamethoxazole-laden secondary wastewater effluent.展开更多
High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro...High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.展开更多
[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transpor...[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.展开更多
One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this t...One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.展开更多
RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them ...RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northern blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.31971872)the Open Research Fund of State Key Laboratory of Hybrid Rice, China (Grant No.2022KF02)+3 种基金the National Natural Science Foundation of China (Grant Nos.32101755 and 32188102)the Zhejiang Provincial Natural Science Foundation, China (Grant No.LY22C130005)the Key Research and Development Program of Zhejiang Province, China (Grant No.2021C02056)the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang, China (Grant No.2023C02014)。
文摘Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.
文摘Hippeastrum (Hippeastrum hybridum), a native of Central and South America, is a bulbous ornamental flowering plant in the Amaryllidaceae family. However, the correct balance of NH4 to NO3-nitrogen in a fertilizer mix for Hippeastrum plants is largely unknown. Nitrogen was applied 2x weekly following irrigation at either 0.6 g (high), 0.3 g (medium) or 0.15 g (low) total N every four months. Nitrogen was supplied in different combinations of NO3 and/or NH4. Nitrate:NH4-N ratios were either 100% NO3:0% NH4 (100NO3), 70% NO3:30% NH4 (70NO3), 50% NO3:50% NH4 (50NO3) (second group only), 30%NO3:70%NH4 (30NO3), or 0% NO3/100% NH4 (100NH4). Growth in bulb diameter after one year of fertilizer treatments not only increased from 0.15 to 0.6 g N (low to high level), but also differed with the form of N supplied to the plant. The largest diameter bulbs were produced in the 70NO3 and 50NO3 high N treatments. Within any NO3/NH4-N ratio grouping, fertilization at the high N rate resulted in larger diameter bulbs. No significant differences existed between treatments in the number of bulbs produced. Bulb growth was greater with a portion of N supplied as NO3 than with NH4-N alone. These results indicate that application of N as a mixture of NH4 and NO3 at 0.6 g per 4 months produces the largest increase in bulb diameter.
基金EES acknowledges funding from a NERC Frontiers grant(NE/V010824/1)Leverhulme Trust research grant(RPG-2022-313).
文摘Over the past two decades,it has become increasingly apparent that early Mars may once have been warmer,wetter and more habitable for microbial life than it is today,which has spurred discussions about potential biosignatures that may be preserved in Martian sediments.An impediment to this line of research is the pervasive oxidation of Mars’surface due to photochemical oxidants that have likely destroyed remnants of organic matter.Here,we investigate whether nitrogen(N)transferred from biomass to phyllosilicate minerals during diagenesis can be preserved in oxidized mudrocks.We investigate two sequences of terrestrial Proterozoic red beds,namely the Sibley Group(1.4 Ga)in Canada and the Stoer Group(1.2 Ga)in Scotland,and we find enrichments in authigenic N in the range of several tens of ppm in both units.The highest concentrations(ca.100 ppm on average)are found in the most desiccated red beds of the Stoer Group,concurrent with enrichments in potassium(K).We discuss similarities and differences between the two sets of rocks with regards to salinity,pH,biological productivity and K-metasomatism,and we conclude that the ideal mechanism for the preservation of biogenic N in red beds may be in-situ release of ammonium from microbial mats into the clay substrate,possibly facilitated by early diagenetic,biologically induced illitization.Illite and smectite have been observed on Mars,and experiments suggest that Martian waters contained moderate amounts of dissolved K.Hence,it is conceivable that a similar K and N enrichment process could have occurred as to what we document for the Proterozoic,preserving evidence of life that may have survived to the modern day.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group research project under Grant Number RGP2/304/44.
文摘Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture.
文摘Nitrogen deficiency induces senescence and the expression of genes encoding ammonium transporters (AMTs) in terrestrial plants where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen starvation in the red seaweed Pyropia yezoensis causes senescence-like discoloration. In this study, we identified five genes in P. yezoensis encoding AMT domain-containing proteins, which were phylogenetically categorized into the AMT1 subfamily. We also found a gene encoding a Rhesus protein (Rh) that was related to, but diverged from, AMTs. Moreover, our phylogenetic analysis showed that AMT domain-containing proteins from micro- and macro-algae belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in algae. Gene expression analyses revealed the presence of gametophyte- and sporophyte-specific AMT1 genes that were up-regulated transiently and continually, respectively, under nitrogen-deficient conditions. In addition, up-regulated sporophyte-specific gene expression was suppressed when nitrogen was resupplied. Accordingly, an expansion of the ancient AMT gene has produced AMT1 functional variants differing in temporal and nitrogen starvation-inducible expression patterns during the life cycle of P. yezoensis. These findings help elucidate the unique nutrition starvation responses involving functionally diverse AMT1 and Rh subfamilies in red seaweed.
基金Project supported by the National Natural Science Foundation of China.
文摘The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils. Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH. The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils. A variation tendency was also found in the δ 15N of amino-acid N in the hydrolysates of soils. The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons, indicating that the increase of δ 15N in the soil horizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.
基金This research was supported by the Natural Science Foundation of Shandong Province(ZR2019MEE038)the Fundamental Research Funds for the Central Universities(19CX02038A).
文摘In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration showed negligible effect on efficiencies for removal of nitrate and COD.However,the ammonium ions removal rate was moderately reduced,when the influent SMX concentration in wastewater reached 6 mg/L.Total nitrogen removal efficiency remained as high as 76.77%towards the day 158 at the end of experiment.Candidatus_Brocadia and Candidatus_Kuenenia were the functional anammox strains.The unclassified_f__Rhodobacteraceae sp.was predominant heterotrophic denitrifying strain in the studied reactor.The concentrations of soluble extracellular polymeric substances in sludge obviously increased from 16.76 mg/g VSS to 32.31 mg/g VSS,which might protect the nitrogen removal strains from high-concentration SMX.This result provides a theoretical and technical foundation for the application of denitrifying ammonium oxidation process in treating sulfamethoxazole-laden secondary wastewater effluent.
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.
基金Supported by Major Project of Water Pollution Control and Treatment(2009ZX07424-002)~~
文摘[Objective] This research aimed to explore the existing forms of ammonium nitrogen adsorbed in a sandy soil with different particle sizes by extraction experiments and provide references for investigating the transport and transformation of the ammonium in the vadose zone.[Method] Sandy soil sample was collected from a landfill and sieved into coarse sand and fine sand.The three kinds of samples were soaked in NH4Cl solution with different initial concentrations,respectively.Then,ammonium adsorbed in soil samples were extracted by three kinds of extraction agents with different extraction capacity,including water,KCl and CaCl2.[Result] The order of extraction capacity of different extraction agents was:water KCl CaCl2;when the concentration of ammonium was low in solution,the ammonium preferentially adsorbed in the exchangeable positions of minerals and mainly existed in the form of exchangeable ammonium;with the increase of concentration,ammonium entered inside the 2:1 clay minerals with enough driving force of the concentration differences and existed in the form of fixed ammonium;little fixed ammonium was observed in coarse sand samples,which was mainly existed in 2:1 clay minerals with strong extraction capacity.[Conclusion] The existing forms of ammonium were closely related to the mineral compositions in soil and the initial concentrations of ammonium.
基金supported by the National Natural Science Foundation of China(Nos.52070153,52200175)the Key Research and Development Program of Shaanxi,China(No.2023-YBSF-283)。
文摘One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.
文摘RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northern blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.