To elucidate the response of oxidative metabolism,triggered by elevated ammonium(NH_(4)^(+))concentrations,on root growth of wheat seedlings,Yumai 49(NH_(4)^(+)-tolerant)and Lumai 15(NH_(4)^(+)-sensitive)cultivars wer...To elucidate the response of oxidative metabolism,triggered by elevated ammonium(NH_(4)^(+))concentrations,on root growth of wheat seedlings,Yumai 49(NH_(4)^(+)-tolerant)and Lumai 15(NH_(4)^(+)-sensitive)cultivars were supplied with either 5.0 mmol L^(–1)NH_(4)^(+)-N(EAC)or 5.0 mmol L–1 NO_(3)–-N(CON)under hydroponic conditions.Root growth in both cultivars was significantly reduced under EAC,and the negative effect was greater in Lumai 15.EAC enhanced the activities of monodehydroascorbate reductase and dehydroascorbate reductase in the roots of both cultivars,while it decreased ascorbic acid(ASA)content and GDP-mannose pyrophosphorylase(GMPase)activity at the 12 th day after treatment in Lumai 15 by 62.0 and 71.4%;and in Yumai 49 by 38.8 and 62.2%,respectively,indicating that the regeneration of ASA was increased,but the biosynthesis of ASA was reduced under EAC treatment.Moreover,EAC increased DHA/ASA,reactive oxygen species(ROS),and malondialdehyde contents,as well as antioxidant enzyme activities in the roots of both cultivars.Relatively greater increases in ROS and soluble sugar,and lower antioxidant enzyme activities in Lumai 15 indicate severe disruption of oxidative metabolism when compared to Yumai 49.Results reveal that the reduction of ASA biosynthesis via decreased GMPase activity under the EAC condition probably acts as a trigger for accumulated ROS and imbalanced redox status,resulting in root growth inhibition during wheat seedling growth stage.Yumai 49,being an NH_(4)^(+)-tolerant cultivar,had the stronger capacity to protect itself from oxidative stress,which allowed it to retain a lower DHA to ASA ratio by maintaining a better redox homeostasis than could be maintained in the NH_(4)^(+)-sensitive cultivar Lumai 15.展开更多
A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. ...A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L^-1 to 22 mmol N L^-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.展开更多
One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this t...One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.展开更多
In a high concentration substrate medium, a heterotrophic bacterium with high removal efficiency of ammonium, named W1, was isolated from activated sludge of coking wastewater treatment facility. The bacterium was Gra...In a high concentration substrate medium, a heterotrophic bacterium with high removal efficiency of ammonium, named W1, was isolated from activated sludge of coking wastewater treatment facility. The bacterium was Gram-negative, rod-shaped, and identified preliminarily as Alcaligenes sp. according to its morphological and physiological properties and its 16S rRNA gene sequence analysis. In the high concentration ammonium medium (400 mg·L 1 4 NH -N), the effects of C source, N source, C/N ratio and initial pH of medium on ammonium removal were investigated in order to determine the optimal condition for strain W1. The maximum ammonium removal was around 95% in 4 days in an improved medium. The production of N 2 gas was examined in a closed system that was full of pure oxygen at the beginning. N 2 gas was detected in the system after 4 days of cultivation, which further testified that strain W1 has heterotrophic nitrification and aerobic denitrification abilities simultaneously.展开更多
基金funded by a project of the National Natural Science Foundation of China(31471443)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)。
文摘To elucidate the response of oxidative metabolism,triggered by elevated ammonium(NH_(4)^(+))concentrations,on root growth of wheat seedlings,Yumai 49(NH_(4)^(+)-tolerant)and Lumai 15(NH_(4)^(+)-sensitive)cultivars were supplied with either 5.0 mmol L^(–1)NH_(4)^(+)-N(EAC)or 5.0 mmol L–1 NO_(3)–-N(CON)under hydroponic conditions.Root growth in both cultivars was significantly reduced under EAC,and the negative effect was greater in Lumai 15.EAC enhanced the activities of monodehydroascorbate reductase and dehydroascorbate reductase in the roots of both cultivars,while it decreased ascorbic acid(ASA)content and GDP-mannose pyrophosphorylase(GMPase)activity at the 12 th day after treatment in Lumai 15 by 62.0 and 71.4%;and in Yumai 49 by 38.8 and 62.2%,respectively,indicating that the regeneration of ASA was increased,but the biosynthesis of ASA was reduced under EAC treatment.Moreover,EAC increased DHA/ASA,reactive oxygen species(ROS),and malondialdehyde contents,as well as antioxidant enzyme activities in the roots of both cultivars.Relatively greater increases in ROS and soluble sugar,and lower antioxidant enzyme activities in Lumai 15 indicate severe disruption of oxidative metabolism when compared to Yumai 49.Results reveal that the reduction of ASA biosynthesis via decreased GMPase activity under the EAC condition probably acts as a trigger for accumulated ROS and imbalanced redox status,resulting in root growth inhibition during wheat seedling growth stage.Yumai 49,being an NH_(4)^(+)-tolerant cultivar,had the stronger capacity to protect itself from oxidative stress,which allowed it to retain a lower DHA to ASA ratio by maintaining a better redox homeostasis than could be maintained in the NH_(4)^(+)-sensitive cultivar Lumai 15.
基金This is part work of the project(30230230)supported by the National Natural Science Foundation of China(NFSC).
文摘A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L^-1 to 22 mmol N L^-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.
基金supported by the National Natural Science Foundation of China(Nos.52070153,52200175)the Key Research and Development Program of Shaanxi,China(No.2023-YBSF-283)。
文摘One-stage partial nitrification coupled with anammox(PN/A)technology effectively reduces the energy consumption of a biological nitrogen removal system.Inhibiting nitrite-oxidizing bacteria(NOB)is essential for this technology to maintain efficient nitrogen removal performance.Initial ammonium concentration(IAC)affects the degree of inhibited NOB.In this study,the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor.The results showed that nitrogen removal efficiency decreased from 82.49%±1.90%to 64.57%±3.96%after the IAC was reduced from 60 to 20 mg N/L,while the nitrate production ratio increased from 13.87%±0.90%to 26.50%±3.76%.NOB activity increased to1,133.86 mg N/m^(2)/day after the IAC decreased,approximately 4-fold,indicating that the IAC plays an important inhibitory role in NOB.The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC.The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure.Ca.Brocadia and Ca.Jettenia were the main anammox bacteria,and Nitrosomonas and Nitrospira were the main AOB and NOB,respectively.IAC did not affect the difference in growth between Ca.Brocadia and Ca.Jettenia.Thus,modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.
基金Supported by the National Natural Science Foundation of China (51078252)the International Cooperation Projects of Shanxi Province (2010081018)the Natural Science Foundation of Shanxi Province (2010011016-1)
文摘In a high concentration substrate medium, a heterotrophic bacterium with high removal efficiency of ammonium, named W1, was isolated from activated sludge of coking wastewater treatment facility. The bacterium was Gram-negative, rod-shaped, and identified preliminarily as Alcaligenes sp. according to its morphological and physiological properties and its 16S rRNA gene sequence analysis. In the high concentration ammonium medium (400 mg·L 1 4 NH -N), the effects of C source, N source, C/N ratio and initial pH of medium on ammonium removal were investigated in order to determine the optimal condition for strain W1. The maximum ammonium removal was around 95% in 4 days in an improved medium. The production of N 2 gas was examined in a closed system that was full of pure oxygen at the beginning. N 2 gas was detected in the system after 4 days of cultivation, which further testified that strain W1 has heterotrophic nitrification and aerobic denitrification abilities simultaneously.