The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achiev...The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achieve a high‐energy conversion efficiency for the electrolysis of water.A good catalyst for water electrolysis should exhibit high catalytic activity,good stability,low cost and good scalability.Much research has been devoted to developing efficient catalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditionally,it has been accepted that a material with high crystallinity is important to serve as a good catalyst for HER and/or OER.Recently,catalysts for HER and/or OER in the electrolysis of water splitting based on amorphous materials have received much interest in the scientific community owing to the abundant unsaturated active sites on the amorphous surface,which form catalytic centers for the reaction of the electrolysis of water.We summarize the recent advances of amorphous catalysts for HER,OER and overall water splitting by electrolysis and the related fundamental chemical reactions involved in the electrolysis of water.The current challenges confronting the electrolysis of water and the development of more efficient amorphous catalysts are also discussed.展开更多
A novel Co-B amorphous alloy catalyst in the form of ultrafine particles was prepared by chemical reduction of CoCl2 with aqueous NaBH4, which exhibited excellent activity and selectivity during the hydrogenation of c...A novel Co-B amorphous alloy catalyst in the form of ultrafine particles was prepared by chemical reduction of CoCl2 with aqueous NaBH4, which exhibited excellent activity and selectivity during the hydrogenation of cinnamaldehyde to cinnamyl alcohol in liquid phase. The optimum yield of cinnamyl alcohol was 87.6%, much better than the yield of using Raney Ni, Raney Co and other Co-based catalysts.展开更多
A supported Ni-B/TiO2 amorphous catalyst was prepared by impregnation and reduction. It was characterized by XRD, SAED, DSC, XPS, etc.. The catalytic activity of catalyst was measured through the hydrogenation of he...A supported Ni-B/TiO2 amorphous catalyst was prepared by impregnation and reduction. It was characterized by XRD, SAED, DSC, XPS, etc.. The catalytic activity of catalyst was measured through the hydrogenation of heavy arenes in petrochemicals for the first time.展开更多
A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize ...A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize and the amorphous character as well as to its textural character. In addition, the concentration of zinc ions, the content of ZrO2 in the slurry, and the pretreatment of the catalyst were found to be effective in improving the activity and the selectivity of the catalyst.展开更多
Five Co-B amorphous alloy catalysts were prepared by chemical reduction in different media, including pure water and pure ethanol as well as the mixture of ethanol and water with variable ethanol content, Their cataly...Five Co-B amorphous alloy catalysts were prepared by chemical reduction in different media, including pure water and pure ethanol as well as the mixture of ethanol and water with variable ethanol content, Their catalytic properties were evaluated using liquid phase furfural hydrogenation to furfuryl alcohol as the probe reaction. It was found that the reaction media had no significant influence on either the amorphous structure of the Co-B catalyst or the electronic interaction between metallic Co and alloying B. This could successfully account for the fact that all the as-prepared Co-B catalysts exhibited almost the same selectivity to furfuryl alcohol and the same activity per surface area ( Rs ), which could be considered as the intrinsic activity, since the nature of active sites remained unchanged. However, the activity per gram of Co ( R^mH ) of the as-prepared Co-B catalysts increased rapidly when the ethanol content in the water-ethanol mixture used as the reaction medium for catalyst preparation increased. This could be attributed to the rapid increase in the surface area possibly owing to the presence of more oxidized boron species which could serve as a support for dispersing the Co-B amorphous alloy particles.展开更多
An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase gluco...An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase glucose hydrogenation, much higher than the corresponding crystallized Ru-B, the pure Ru powder, and Raney Ni catalysts. The correlation of the catalytic activity to both the structural and surface electronic characteristics was discussed briefly.展开更多
Both the unsupported and supported NiB amorphous alloy catalysts (NiB and NiB/TiO2) were prepared by the chemical reduction method. Their catalytic activities were tested by the hydrogenation of sulfolene. The interac...Both the unsupported and supported NiB amorphous alloy catalysts (NiB and NiB/TiO2) were prepared by the chemical reduction method. Their catalytic activities were tested by the hydrogenation of sulfolene. The interactions between the NiB alloy and TiO2 were discussed for the first time by using XRD, ICP, SEM and TEM.展开更多
A new supported amorphous catalyst CoP/TiO2 was prepared by chemical reduction and characterized by ICP, XRD, TEM, BET and DSC. Its application in decomposing PH3 to high purity phosphor and its catalytic activity wer...A new supported amorphous catalyst CoP/TiO2 was prepared by chemical reduction and characterized by ICP, XRD, TEM, BET and DSC. Its application in decomposing PH3 to high purity phosphor and its catalytic activity were studied. The decomposition rate is over 95% at 450 ℃. For comparison, unsupported CoP amorphous catalyst was prepared by the same method. The result suggests that CoP/TiO2 exhibits higher thermal stability and catalytic activity than CoP, which is attributed to the high dispersion of CoP alloy particles on the support-TiO2.展开更多
The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The result...The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The results show that the addition of La to RuB amorphous alloy catalyst can evidently increase the activity and improve the thermal stability of RuB amorphous alloy to refrain its crystallization. The promoting effect of La on the activity of RuB amorphous alloy catalyst is because of the high dispersion of the active components.展开更多
Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and be...Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and better catalytic activity and ethylene selectivity in the acetylene hydrogenation reaction.展开更多
A new preparation method was proposed to deposit amorphous alloys alloys containing NiPand metallic metallic additives such as Fe.Co. and Cu.The different effects of metallic additive onstructure and catalytic ...A new preparation method was proposed to deposit amorphous alloys alloys containing NiPand metallic metallic additives such as Fe.Co. and Cu.The different effects of metallic additive onstructure and catalytic properties of supported amorphous NiMPB/SiO2 (M=Fe, Co. Cu) cafalysts were observed,and the improvement of catalytic activity due to heating pretreatment in hydrogenwas found.展开更多
Electrochemical oxidation of small molecules(e.g.,water,urea,methanol,hydrazine,and glycerol)has gained growing scientific interest in the fields of electrochemical energy conversion/storage and environmental remediat...Electrochemical oxidation of small molecules(e.g.,water,urea,methanol,hydrazine,and glycerol)has gained growing scientific interest in the fields of electrochemical energy conversion/storage and environmental remediation.Designing cost-effective catalysts for the electrooxidation of small molecules(ESM)is thus crucial for improving reaction efficiency.Recently,earth-abundant amorphous transition metal(TM)-based nanomaterials have aroused souring interest owing to their earth-abundance,flexible structures,and excellent electrochemical activities.Hundreds of amorphous TM-based nanomaterials have been designed and used as promising ESM catalysts.Herein,recent advances in the design of amorphous TM-based ESM catalysts are comprehensively reviewed.The features(e.g.,large specific surface area,flexible electronic structure,and facile structure reconstruction)of amorphous TM-based ESM catalysts are first analyzed.Afterward,the design of various TM-based catalysts with advanced strategies(e.g.,nanostructure design,component regulation,heteroatom doping,and heterostructure construction)is fully scrutinized,and the catalysts’structure-performance correlation is emphasized.Future perspectives in the development of cost-effective amorphous TM-based catalysts are then outlined.This review is expected to provide practical strategies for the design of next-generation amorphous electrocatalysts.展开更多
Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocry...Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocrystalline electrocatalysts normally suffer from low catalytic efficiency,severe CO poisoning and rapid activity decay.Herein,we report a novel amorphous Pd Ni Cu P catalyst synthesized with laser liquid ablation as a potential settlement to this issue.The as-obtained amorphous Pd Ni Cu P catalyst exhibits enhanced electrocatalytic performance with the mass activity of 1.61 A mg^(-1)and 737.8 m A mg^(-1)towards methanol oxidation reaction(MOR)and formic acid oxidation reaction(FAOR),respectively.Moreover,amorphous Pd Ni Cu P displays excellent operation stability and CO-poisoning resistance in both alkaline and acidic medium.P was proposed to play the decisive role for forming the amorphous structure and maintaining the catalytic stability in MOR and FAOR processes.This work provided insights for the ration design of active and durable amorphous electrocatalysts applied in direct liquid fuel cells.展开更多
Ru-B/γ-Al2O3 catalyst was prepared by reductant impregnation method,which was applied in the selective hydrogenation of ethyl 1H-indole-2-carboxylate for producing ethyl 2,3,3a,7a-tetrahydro-1H-indole-2-carboxylate w...Ru-B/γ-Al2O3 catalyst was prepared by reductant impregnation method,which was applied in the selective hydrogenation of ethyl 1H-indole-2-carboxylate for producing ethyl 2,3,3a,7a-tetrahydro-1H-indole-2-carboxylate with hydrogen as reductant.Furthermore,we discussed the influences of substrate concentration,reaction solvent,hydrogenation temperature,initial hydrogen pressure and reaction time on the catalytic performance of the as-prepared catalyst.The obtained Ru-B/γ-Al2O3 catalyst showed a high-efficiency for the selective hydrogenation of ethyl 1H-indole-2-carboxylate(>99% conversion and selectivity) in i-propanol used as solvent at a concentration of 10%(mass fraction) of ethyl 1H-indole-2-carboxylate,a pressure of hydrogen of 6 MPa and a reaction temperature of 373 K.展开更多
A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditio...A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.展开更多
Amorphous metal-based catalysts(AMCs)have sparked intense research interests in the field of electrocatalysis elicited by their hallmark features such as unlimited volume and morphology,manipulated electronic structur...Amorphous metal-based catalysts(AMCs)have sparked intense research interests in the field of electrocatalysis elicited by their hallmark features such as unlimited volume and morphology,manipulated electronic structures,enriched defects,and unsaturated surface atom coordination.Nevertheless,the manipulation of the amorphous phase in metal-based catalysts is so far impractical,and thus their electrocatalytic mechanism yet remains ambiguous.In this review,the latest advances in AMCs are systematically reviewed,covering amorphous-phase engineering strategy,structure manipulation,and amorphization of various material categories for electrocatalysis.Specifically,a series of applications of AMCs in electrocatalysis for the oxygen reduction reaction(ORR),hydrogen evolution reaction(HER),and oxygen evolution reaction(OER)are summarized based on the classification criteria of substances.Finally,we put forward current challenges that have not yet been clarified in the field of AMCs,and propose possible solutions,particularly from the perspective of the evolution of electron microscopy.It is expected to promote the understanding of the amorphization-catalysis relationship and provide a guideline for designing high-performance electrocatalysts.展开更多
基金the financial support from Chinese Scholarship Council (CSC)the support from Australian Research Council (ARC) Future Fellowship scheme
文摘The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achieve a high‐energy conversion efficiency for the electrolysis of water.A good catalyst for water electrolysis should exhibit high catalytic activity,good stability,low cost and good scalability.Much research has been devoted to developing efficient catalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditionally,it has been accepted that a material with high crystallinity is important to serve as a good catalyst for HER and/or OER.Recently,catalysts for HER and/or OER in the electrolysis of water splitting based on amorphous materials have received much interest in the scientific community owing to the abundant unsaturated active sites on the amorphous surface,which form catalytic centers for the reaction of the electrolysis of water.We summarize the recent advances of amorphous catalysts for HER,OER and overall water splitting by electrolysis and the related fundamental chemical reactions involved in the electrolysis of water.The current challenges confronting the electrolysis of water and the development of more efficient amorphous catalysts are also discussed.
基金This work was supported by the National Natural Science Foundation of China (29973025) and the Natural Science Foundation of Shanghai Science and Technology Committee (98QMA11402).
文摘A novel Co-B amorphous alloy catalyst in the form of ultrafine particles was prepared by chemical reduction of CoCl2 with aqueous NaBH4, which exhibited excellent activity and selectivity during the hydrogenation of cinnamaldehyde to cinnamyl alcohol in liquid phase. The optimum yield of cinnamyl alcohol was 87.6%, much better than the yield of using Raney Ni, Raney Co and other Co-based catalysts.
基金the NNSFC, RFDP, NSFTC and NNSFCTJ for the financial support (20003006, 2000005520, 99380171 and 031606211).
文摘A supported Ni-B/TiO2 amorphous catalyst was prepared by impregnation and reduction. It was characterized by XRD, SAED, DSC, XPS, etc.. The catalytic activity of catalyst was measured through the hydrogenation of heavy arenes in petrochemicals for the first time.
文摘A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize and the amorphous character as well as to its textural character. In addition, the concentration of zinc ions, the content of ZrO2 in the slurry, and the pretreatment of the catalyst were found to be effective in improving the activity and the selectivity of the catalyst.
文摘Five Co-B amorphous alloy catalysts were prepared by chemical reduction in different media, including pure water and pure ethanol as well as the mixture of ethanol and water with variable ethanol content, Their catalytic properties were evaluated using liquid phase furfural hydrogenation to furfuryl alcohol as the probe reaction. It was found that the reaction media had no significant influence on either the amorphous structure of the Co-B catalyst or the electronic interaction between metallic Co and alloying B. This could successfully account for the fact that all the as-prepared Co-B catalysts exhibited almost the same selectivity to furfuryl alcohol and the same activity per surface area ( Rs ), which could be considered as the intrinsic activity, since the nature of active sites remained unchanged. However, the activity per gram of Co ( R^mH ) of the as-prepared Co-B catalysts increased rapidly when the ethanol content in the water-ethanol mixture used as the reaction medium for catalyst preparation increased. This could be attributed to the rapid increase in the surface area possibly owing to the presence of more oxidized boron species which could serve as a support for dispersing the Co-B amorphous alloy particles.
文摘An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase glucose hydrogenation, much higher than the corresponding crystallized Ru-B, the pure Ru powder, and Raney Ni catalysts. The correlation of the catalytic activity to both the structural and surface electronic characteristics was discussed briefly.
文摘Both the unsupported and supported NiB amorphous alloy catalysts (NiB and NiB/TiO2) were prepared by the chemical reduction method. Their catalytic activities were tested by the hydrogenation of sulfolene. The interactions between the NiB alloy and TiO2 were discussed for the first time by using XRD, ICP, SEM and TEM.
基金Natural Science Foundation of Tianjin(No.043801311)
文摘A new supported amorphous catalyst CoP/TiO2 was prepared by chemical reduction and characterized by ICP, XRD, TEM, BET and DSC. Its application in decomposing PH3 to high purity phosphor and its catalytic activity were studied. The decomposition rate is over 95% at 450 ℃. For comparison, unsupported CoP amorphous catalyst was prepared by the same method. The result suggests that CoP/TiO2 exhibits higher thermal stability and catalytic activity than CoP, which is attributed to the high dispersion of CoP alloy particles on the support-TiO2.
文摘The effect of La on the performance of a supported RuB amorphous alloy catalyst for benzene selective hydrogenation was studied by means of activity and selectivity tests, such as HRTEM, SAED, XPS, and XRD. The results show that the addition of La to RuB amorphous alloy catalyst can evidently increase the activity and improve the thermal stability of RuB amorphous alloy to refrain its crystallization. The promoting effect of La on the activity of RuB amorphous alloy catalyst is because of the high dispersion of the active components.
基金The National Natural Science Foundation of China(No.20263003)supported this work.
文摘Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and better catalytic activity and ethylene selectivity in the acetylene hydrogenation reaction.
文摘A new preparation method was proposed to deposit amorphous alloys alloys containing NiPand metallic metallic additives such as Fe.Co. and Cu.The different effects of metallic additive onstructure and catalytic properties of supported amorphous NiMPB/SiO2 (M=Fe, Co. Cu) cafalysts were observed,and the improvement of catalytic activity due to heating pretreatment in hydrogenwas found.
基金Australian Research Council,Grant/Award Number:DP220101139。
文摘Electrochemical oxidation of small molecules(e.g.,water,urea,methanol,hydrazine,and glycerol)has gained growing scientific interest in the fields of electrochemical energy conversion/storage and environmental remediation.Designing cost-effective catalysts for the electrooxidation of small molecules(ESM)is thus crucial for improving reaction efficiency.Recently,earth-abundant amorphous transition metal(TM)-based nanomaterials have aroused souring interest owing to their earth-abundance,flexible structures,and excellent electrochemical activities.Hundreds of amorphous TM-based nanomaterials have been designed and used as promising ESM catalysts.Herein,recent advances in the design of amorphous TM-based ESM catalysts are comprehensively reviewed.The features(e.g.,large specific surface area,flexible electronic structure,and facile structure reconstruction)of amorphous TM-based ESM catalysts are first analyzed.Afterward,the design of various TM-based catalysts with advanced strategies(e.g.,nanostructure design,component regulation,heteroatom doping,and heterostructure construction)is fully scrutinized,and the catalysts’structure-performance correlation is emphasized.Future perspectives in the development of cost-effective amorphous TM-based catalysts are then outlined.This review is expected to provide practical strategies for the design of next-generation amorphous electrocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.52177220,52001219 and U1601216)。
文摘Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocrystalline electrocatalysts normally suffer from low catalytic efficiency,severe CO poisoning and rapid activity decay.Herein,we report a novel amorphous Pd Ni Cu P catalyst synthesized with laser liquid ablation as a potential settlement to this issue.The as-obtained amorphous Pd Ni Cu P catalyst exhibits enhanced electrocatalytic performance with the mass activity of 1.61 A mg^(-1)and 737.8 m A mg^(-1)towards methanol oxidation reaction(MOR)and formic acid oxidation reaction(FAOR),respectively.Moreover,amorphous Pd Ni Cu P displays excellent operation stability and CO-poisoning resistance in both alkaline and acidic medium.P was proposed to play the decisive role for forming the amorphous structure and maintaining the catalytic stability in MOR and FAOR processes.This work provided insights for the ration design of active and durable amorphous electrocatalysts applied in direct liquid fuel cells.
文摘Ru-B/γ-Al2O3 catalyst was prepared by reductant impregnation method,which was applied in the selective hydrogenation of ethyl 1H-indole-2-carboxylate for producing ethyl 2,3,3a,7a-tetrahydro-1H-indole-2-carboxylate with hydrogen as reductant.Furthermore,we discussed the influences of substrate concentration,reaction solvent,hydrogenation temperature,initial hydrogen pressure and reaction time on the catalytic performance of the as-prepared catalyst.The obtained Ru-B/γ-Al2O3 catalyst showed a high-efficiency for the selective hydrogenation of ethyl 1H-indole-2-carboxylate(>99% conversion and selectivity) in i-propanol used as solvent at a concentration of 10%(mass fraction) of ethyl 1H-indole-2-carboxylate,a pressure of hydrogen of 6 MPa and a reaction temperature of 373 K.
文摘A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.
基金the National Natural Science Foundation of China(Nos.52001222,52075361,and U21A20174)the Key National Scientific and Technological Cooperation Projects of Shanxi Province(No.202104041101008)+5 种基金the Major Science and Technology Project of Shanxi Province(No.20201102003)the Key Research and Development Projects in Shanxi Province(No.201903D421030)the Natural Science Foundation of Shanxi Province(Nos.201701D221073 and 201901D111107)the Program for the Innovative Talents of Higher Education Institutions of Shanxi(PTIT)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP,No.2019L025)the Special Foundation for Youth San Jin scholars。
文摘Amorphous metal-based catalysts(AMCs)have sparked intense research interests in the field of electrocatalysis elicited by their hallmark features such as unlimited volume and morphology,manipulated electronic structures,enriched defects,and unsaturated surface atom coordination.Nevertheless,the manipulation of the amorphous phase in metal-based catalysts is so far impractical,and thus their electrocatalytic mechanism yet remains ambiguous.In this review,the latest advances in AMCs are systematically reviewed,covering amorphous-phase engineering strategy,structure manipulation,and amorphization of various material categories for electrocatalysis.Specifically,a series of applications of AMCs in electrocatalysis for the oxygen reduction reaction(ORR),hydrogen evolution reaction(HER),and oxygen evolution reaction(OER)are summarized based on the classification criteria of substances.Finally,we put forward current challenges that have not yet been clarified in the field of AMCs,and propose possible solutions,particularly from the perspective of the evolution of electron microscopy.It is expected to promote the understanding of the amorphization-catalysis relationship and provide a guideline for designing high-performance electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(U1905215 and 52072076)the National Key Research and Development Program/Key Scientific Issues of Transformative Technology(2020YFA0710303)+1 种基金Fujian Natural Science Foundation(2022J01554)the Key Project of Science and Technology Innovation of Fujian Provincial Department of Education(2022G02002)。