We present results of an experimental study of magnetoresistance phenomenon in an amorphous silicon-nickel alloys a-Si1-yNiy:H:H (where y = 0.23) on the insulating side of the metal-insulator transition (MIT) in prese...We present results of an experimental study of magnetoresistance phenomenon in an amorphous silicon-nickel alloys a-Si1-yNiy:H:H (where y = 0.23) on the insulating side of the metal-insulator transition (MIT) in presence of magnetic field up to 4.5 T and at very low temperature. The electrical resistivity is found to follow the Efros-Shklovskii Variable Range Hopping regime (ES VRH) with T -1/2. This behaviour indicates the existence of the Coulomb gap (CG) near the Fermi level.展开更多
Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour d...Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.展开更多
Amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering. The influences of the additives of Y2O3 and Al2O3 prepared by two different ways, the polyacrylamide gel method and the precipitati...Amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering. The influences of the additives of Y2O3 and Al2O3 prepared by two different ways, the polyacrylamide gel method and the precipitation method, were investigated. The grain sizes of the additives prepared by the first method were finer than those of prepared by the latter method. When sintered at the same temperature, 1700 ℃, the average grain size of the silicon nitride is 0.3 um for the sample with the former additives, which is much finer than the one with the latter additives. The density of additives prepared by precipitation method is clearly lower than those of prepared by polyacrylamide gel method.展开更多
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
Silicon is a promising anode material for rechargeable Li-ion battery (LIB) due to its high energy density and relatively low operating voltage. However, silicon based electrodes suffer from rapid capacity degradation...Silicon is a promising anode material for rechargeable Li-ion battery (LIB) due to its high energy density and relatively low operating voltage. However, silicon based electrodes suffer from rapid capacity degradation during electrochemical cycling. The capacity decay is predominantly caused by (i) cracking due to large volume variations during lithium insertion/extraction and (ii) surface degradation due to excessive solid electrolyte interface (SEI) formation. In this work, we demonstrate that coating of a-Si thin film with a Li-active, nanoporous SiOx layer can result in exceptional electrochemical performance in Li-ion battery. The SiOx layer provides improved cracking resistance to the thin film and prevent the active material loss due to excessive SEI formation, benefiting the electrode cycling stability. Half-cell experiments using this anode material show an initial reversible capacity of 2173 mAh g^-1 with an excellent coulombic efficiency of 90.9%. Furthermore, the electrode shows remarkable capacity retention of ~97% after 100 cycles at C/2 charging rate. The proposed anode architecture is free from Liinactive binders and conductive additives and provides mechanical stability during the charge/discharge process.展开更多
Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chem-ical vapor deposition (PECVD) technique using hydrogen-diluted Sill4 at 250 ℃. The dependence of the cr...Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chem-ical vapor deposition (PECVD) technique using hydrogen-diluted Sill4 at 250 ℃. The dependence of the crystallinity of the film on the hydrogen dilution ratio and the film thickness was investigated. Raman spectra show that the thickness of the initial amorphous incubation layer on silicon oxide gradually decreases with increasing hydrogen dilution ratio. High-resolution transmission electron microscopy reveals that the initial amorphous incubation layer can be completely eliminated at a hydrogen dilution ratio of 98%, which is lower than that needed for the growth of amorphous-layer-free nanocrystalline silicon using an excitation frequency of 13.56 MHz. More studies on the microstructure evolution of the initial amorphous incubation layer with hydrogen dilution ratios were performed using Fourier-transform infrared spectroscopy. It is suggested that the high hydrogen dilution, as well as the higher plasma excitation frequency, plays an important role in the formation of amorphous-layer-free nanocrystalline silicon films.展开更多
Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (a-SiC:H) films, and the influences of Ag island films on the optical properties of the tx-SiC:H films are investigated....Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (a-SiC:H) films, and the influences of Ag island films on the optical properties of the tx-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of a-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.展开更多
The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during i...The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during illumination are revealed. It is found surprisingly that the initial photoconductivity determines directly the total account of photoconductivity degradation of sample.展开更多
Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO). Scanning electron...Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO). Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show that the silicon nanowires are smooth. Selected area electron diffraction (SAED) shows that the silicon nanowires are amorphous and en-ergy-dispersive X-ray spectroscopy (EDS) indicates that the nanowires have the composition of Si and O elements in an atomic ratio of 1:2,their composition approximates that of SiO2. SiO is considered to be used as a Si sources to produce SiNWs. We conclude that the growth mechanism is closely related to the defect structure and silicon monoxide followed by growth through an oxide-assisted vapor-solid reaction.展开更多
The morphous silicon films prepared by PECVD at substrate temperatures of 30℃ have been crystallized by rapid thermal annealing method, the budget of time-temperature in the annealing process is 600℃ for 120s, 850℃...The morphous silicon films prepared by PECVD at substrate temperatures of 30℃ have been crystallized by rapid thermal annealing method, the budget of time-temperature in the annealing process is 600℃ for 120s, 850℃ for 120s, and 950℃ for 120s. The results indicate the crystallization at 850℃ and 950℃ are better as shown in micro-Raman scattering and scanning electronic microscope.展开更多
This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-Si...This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely. A significant improvement in open circuit voltage has been obtained by using high quality p-~SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.展开更多
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ...The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.展开更多
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness...Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.展开更多
Laser interference induced crystallization of amorphous silicon (a-Si) on the glass substrate was performed using a Q-switched Nd:YAG (yttrium aluminum garnet) laser. White light interferometer (WLI) and atomic...Laser interference induced crystallization of amorphous silicon (a-Si) on the glass substrate was performed using a Q-switched Nd:YAG (yttrium aluminum garnet) laser. White light interferometer (WLI) and atomic force microscope (AFM) were used to characterize the morphology of the structured films, while X-ray diffraction (XRD), combined with the AFM, was used to analyse the crystalline structure of the film. The experimental results show that the laser energy density above a certain threshold, in the range of 400-500 mJ/cm2,triggers the patterned crystallizations which take the form similar to the laser intensity distribution. For the patterned crystallization under multipulse exposure, a definite polycrystalline structure with individual phases was observed by XRD. The difference in feature form, e.g., deepened craters or heightened lines, is related to the laser energy density relative to the threshold of evaporation of the material.展开更多
Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface pass...Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface passivation properties.The minority carrier lifetime of symmetric heterostructure is measured by using Sinton Consulting WCT-120 lifetime tester system,and a simple method of determining the interface state density(D_(it)) from lifetime measurement is proposed.The interface state density(D_(it)) measurement is also performed by using deep-level transient spectroscopy(DLTS) to prove the validity of the simple method.The microstructures and hydrogen bonding configurations of a-Si:H films with different hydrogen dilutions are investigated by using spectroscopic ellipsometry(SE) and Fourier transform infrared spectroscopy(FTIR) respectively.Lower values of interface state density(D_(it)) are obtained by using a-Si:H film with more uniform,compact microstructures and fewer bulk defects on crystalline silicon deposited by HWCVD.展开更多
Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has...Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells.展开更多
Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room te...Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.展开更多
Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar c...Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar cells by means of simultaneous running test. This kind of comparison is of importance practically, because the comparison of only inherent characteristics cannot include environmental parameters such as temperature totally. It was concluded that both types of solar cells provided almost the same energy for one year. The amorphous silicon solar cell provided more energy in summer while the tandem solar cell was advantageous in winter. It is due to the fact that the decrease in energy conversion at the higher cell temperature is more noticeable in tandem solar cells.展开更多
Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on th...Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.展开更多
文摘We present results of an experimental study of magnetoresistance phenomenon in an amorphous silicon-nickel alloys a-Si1-yNiy:H:H (where y = 0.23) on the insulating side of the metal-insulator transition (MIT) in presence of magnetic field up to 4.5 T and at very low temperature. The electrical resistivity is found to follow the Efros-Shklovskii Variable Range Hopping regime (ES VRH) with T -1/2. This behaviour indicates the existence of the Coulomb gap (CG) near the Fermi level.
文摘Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.
基金Funded by the National Postdoctoral Foundation of China(No.20060400787)
文摘Amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering. The influences of the additives of Y2O3 and Al2O3 prepared by two different ways, the polyacrylamide gel method and the precipitation method, were investigated. The grain sizes of the additives prepared by the first method were finer than those of prepared by the latter method. When sintered at the same temperature, 1700 ℃, the average grain size of the silicon nitride is 0.3 um for the sample with the former additives, which is much finer than the one with the latter additives. The density of additives prepared by precipitation method is clearly lower than those of prepared by polyacrylamide gel method.
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
基金financial support from ARC Discovery Projects (DP150101717 and DP180102003)
文摘Silicon is a promising anode material for rechargeable Li-ion battery (LIB) due to its high energy density and relatively low operating voltage. However, silicon based electrodes suffer from rapid capacity degradation during electrochemical cycling. The capacity decay is predominantly caused by (i) cracking due to large volume variations during lithium insertion/extraction and (ii) surface degradation due to excessive solid electrolyte interface (SEI) formation. In this work, we demonstrate that coating of a-Si thin film with a Li-active, nanoporous SiOx layer can result in exceptional electrochemical performance in Li-ion battery. The SiOx layer provides improved cracking resistance to the thin film and prevent the active material loss due to excessive SEI formation, benefiting the electrode cycling stability. Half-cell experiments using this anode material show an initial reversible capacity of 2173 mAh g^-1 with an excellent coulombic efficiency of 90.9%. Furthermore, the electrode shows remarkable capacity retention of ~97% after 100 cycles at C/2 charging rate. The proposed anode architecture is free from Liinactive binders and conductive additives and provides mechanical stability during the charge/discharge process.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60806046)the Natural Science Foundation of Guangdong Province of China (Grant No. S2011010001853)the FDYT (Grant No. LYM10099)
文摘Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chem-ical vapor deposition (PECVD) technique using hydrogen-diluted Sill4 at 250 ℃. The dependence of the crystallinity of the film on the hydrogen dilution ratio and the film thickness was investigated. Raman spectra show that the thickness of the initial amorphous incubation layer on silicon oxide gradually decreases with increasing hydrogen dilution ratio. High-resolution transmission electron microscopy reveals that the initial amorphous incubation layer can be completely eliminated at a hydrogen dilution ratio of 98%, which is lower than that needed for the growth of amorphous-layer-free nanocrystalline silicon using an excitation frequency of 13.56 MHz. More studies on the microstructure evolution of the initial amorphous incubation layer with hydrogen dilution ratios were performed using Fourier-transform infrared spectroscopy. It is suggested that the high hydrogen dilution, as well as the higher plasma excitation frequency, plays an important role in the formation of amorphous-layer-free nanocrystalline silicon films.
基金Project supported by the Key Basic Research Project of Hebei Province, China (Grant No. 12963929D)the Natural Science Foundation of Hebei Province,China (Grant Nos. F2012201007 and F2012201042)
文摘Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (a-SiC:H) films, and the influences of Ag island films on the optical properties of the tx-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of a-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.
文摘The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during illumination are revealed. It is found surprisingly that the initial photoconductivity determines directly the total account of photoconductivity degradation of sample.
文摘Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO). Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show that the silicon nanowires are smooth. Selected area electron diffraction (SAED) shows that the silicon nanowires are amorphous and en-ergy-dispersive X-ray spectroscopy (EDS) indicates that the nanowires have the composition of Si and O elements in an atomic ratio of 1:2,their composition approximates that of SiO2. SiO is considered to be used as a Si sources to produce SiNWs. We conclude that the growth mechanism is closely related to the defect structure and silicon monoxide followed by growth through an oxide-assisted vapor-solid reaction.
文摘The morphous silicon films prepared by PECVD at substrate temperatures of 30℃ have been crystallized by rapid thermal annealing method, the budget of time-temperature in the annealing process is 600℃ for 120s, 850℃ for 120s, and 950℃ for 120s. The results indicate the crystallization at 850℃ and 950℃ are better as shown in micro-Raman scattering and scanning electronic microscope.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA05Z422), the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707), and the Natural Science Foundation of Tianjin (Grant No. 08JCZDJC22200).
文摘This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely. A significant improvement in open circuit voltage has been obtained by using high quality p-~SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202601)the Natural Science Research Program of the Education Bureau of Henan Province of China(Grant No.2009A140007)
文摘The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.
基金National Natural Science Foundation of China (Nos.60407013,60876081)the Shanghai-Applied Materials Research and Development Fund of China (No.06SA04)the National High Technology Research and Development Program of China (Nos.2009AA04Z317,2007AA04Z354-03)
文摘Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.
文摘Laser interference induced crystallization of amorphous silicon (a-Si) on the glass substrate was performed using a Q-switched Nd:YAG (yttrium aluminum garnet) laser. White light interferometer (WLI) and atomic force microscope (AFM) were used to characterize the morphology of the structured films, while X-ray diffraction (XRD), combined with the AFM, was used to analyse the crystalline structure of the film. The experimental results show that the laser energy density above a certain threshold, in the range of 400-500 mJ/cm2,triggers the patterned crystallizations which take the form similar to the laser intensity distribution. For the patterned crystallization under multipulse exposure, a definite polycrystalline structure with individual phases was observed by XRD. The difference in feature form, e.g., deepened craters or heightened lines, is related to the laser energy density relative to the threshold of evaporation of the material.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51361022 and 61574072)the Postdoctoral Science Foundation of Jiangxi Province,China(Grant No.2015KY12)
文摘Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface passivation properties.The minority carrier lifetime of symmetric heterostructure is measured by using Sinton Consulting WCT-120 lifetime tester system,and a simple method of determining the interface state density(D_(it)) from lifetime measurement is proposed.The interface state density(D_(it)) measurement is also performed by using deep-level transient spectroscopy(DLTS) to prove the validity of the simple method.The microstructures and hydrogen bonding configurations of a-Si:H films with different hydrogen dilutions are investigated by using spectroscopic ellipsometry(SE) and Fourier transform infrared spectroscopy(FTIR) respectively.Lower values of interface state density(D_(it)) are obtained by using a-Si:H film with more uniform,compact microstructures and fewer bulk defects on crystalline silicon deposited by HWCVD.
文摘Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells.
基金the National Natural Science Foundation of china(No.50372060)
文摘Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.
文摘Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar cells by means of simultaneous running test. This kind of comparison is of importance practically, because the comparison of only inherent characteristics cannot include environmental parameters such as temperature totally. It was concluded that both types of solar cells provided almost the same energy for one year. The amorphous silicon solar cell provided more energy in summer while the tandem solar cell was advantageous in winter. It is due to the fact that the decrease in energy conversion at the higher cell temperature is more noticeable in tandem solar cells.
基金Project supproted by the National Natural Science Foundation of China(60025409 and 50472068)National"863"High Technology Plan(2001AA311080)Program for New Century Excellent Talents in Shangdong University
文摘Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.