Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface pass...Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface passivation properties.The minority carrier lifetime of symmetric heterostructure is measured by using Sinton Consulting WCT-120 lifetime tester system,and a simple method of determining the interface state density(D_(it)) from lifetime measurement is proposed.The interface state density(D_(it)) measurement is also performed by using deep-level transient spectroscopy(DLTS) to prove the validity of the simple method.The microstructures and hydrogen bonding configurations of a-Si:H films with different hydrogen dilutions are investigated by using spectroscopic ellipsometry(SE) and Fourier transform infrared spectroscopy(FTIR) respectively.Lower values of interface state density(D_(it)) are obtained by using a-Si:H film with more uniform,compact microstructures and fewer bulk defects on crystalline silicon deposited by HWCVD.展开更多
Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate sin...Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.展开更多
Crystalline behavior and magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X ray diffraction (XRD) and...Crystalline behavior and magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X ray diffraction (XRD) and the vibrating sample magnetometer (VSM). Neither glass transition nor supercooled liquid region before crystallization was observed for the as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys. The glass forming ability can be improved significantly by the addition of Co. The as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys show hard magnetic behavior. With the addition of Co content, intrinsic coercivity ( i H c) increases while the saturation magnetization( σ s) and remanence ( σ r) decrease. The Curie temperature for the as cast Nd 60 Fe 30- x Al 10 Co x alloys increases from 451 K for x =0 to 468 K for x =10. Some precipitation of crystalline phases does not affect the hard magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys, while the hard magnetic behavior disappears quickly after the alloys being completely crystallized.展开更多
Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly aff...Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly affected by the conditions of hydrothermal treatment including siliceous materials, temperature increase rate and isothermal periods. In this study, the influence of hydrothermal conditions on the growth of nano-crystalline CSH was investigated based on XRD analysis. Results showed that siliceous materials with amorphous nature(i e, nano silica powder) are beneficial to synthesize pure amorphous CSH, while the use of more crystallized siliceous materials(i e, diatomite and quartz powder) leads to producing crystalline CSH. Results also indicate that the formation of tobermorite and xonotlite is greatly affected by the temperature rise rate during hydrothermal treatment.展开更多
The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous(C/A) Mg/Mg–Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sa...The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous(C/A) Mg/Mg–Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation(1210) [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg–Al nanocomposites, the ‘double hump' behavior can be observed in all the stress–strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials.展开更多
The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated.Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33...The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated.Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33MnO3 /F:SnO2 junctions are obtained at room temperature.Dramatically,the coexistence of two switching polarities could be reversibly adjusted by an applied voltage range.The results allocated those two switching types to areas of different defect densities beneath the same electrode.The migration of oxygen vacancies and the trapping effect of electrons under an applied electric field play an important role.An interface-effect-related resistance switching is proposed in an amorphous Pr0.67Sr0.33MnO3-based memory cell.展开更多
Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has...Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells.展开更多
Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric ...Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric film capacitors. Two prominent examples of polymer dielectrics Polyetherimide (PEI) and Poly (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) have been discussed. Polyetherimide (PEI) is an amorphous polymer recognized for its high-temperature capability, low dielectric loss and high dielectric strength. THV is a semi-crystalline polymer with high dielectric constant, high-temperature capability and charge-discharge efficiency. The primary focus of this paper is to introduce the reader to the fabrication procedures and characterization techniques used in research labs for processing of dielectric polymers. The fabrication and characterization process of both polymers has been discussed in detail to shed the light on experimental process in this area of research.展开更多
Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomater...Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomaterials can further enhance electrochemical performance.To date,various feasible strategies have been proposed,of which amorphous/crystalline(a-c)heterointerface engineering is deemed an effective approach to break through the inherent activity limitations of electrode materials.The following review discusses recent research progress on a-c heterointerfaces for enhanced electrochemical processes.The general strategies for synthesizing ac heterojunctions are first summarized.Subsequently,we highlight various advanced applications of a-c heterointerfaces in the field of electrochemistry,including for supercapacitors,batteries,and electrocatalysts.We also elucidate the synergistic mechanism of the crystalline phase and amorphous phase for electrochemical processes.Lastly,we summarize the challenges,present our personal opinions,and offer a critical perspective on the further development of a-c nanomaterials.展开更多
Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures wer...Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system.展开更多
The time and temperature dependence of threshold voltage shift under positive-bias stress(PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide(a-IGZO) thin-film transisto...The time and temperature dependence of threshold voltage shift under positive-bias stress(PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide(a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτ stress= 0.72 eV for the PBS process and an average effective energy barrier Eτ recovery= 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development.展开更多
Cobalt hydroxide nanosheet is among the most popular oxygen evolution reaction(OER)catalyst yet still suffers from sluggish catalytic kinetics,limited activity,and poor stability.Here,an efficient in situ electrochemi...Cobalt hydroxide nanosheet is among the most popular oxygen evolution reaction(OER)catalyst yet still suffers from sluggish catalytic kinetics,limited activity,and poor stability.Here,an efficient in situ electrochemical reconstructed CoFe-hydroxides derived OER electrocatalyst was reported.The introduction of Fe promoted the transformation of Co^(2+)into Co^(3+)in CoFehydroxides nanosheet,along with the formation of abundant amorphous/crystalline interfaces.Thanks for the retained nanosheet microstructure,high valence Co^(3+)and Fe^(3+)species,and the amorphous/crystalline heterostructure interfaces,the as-designed electrochemical reconstructed CoFeOOH nanosheet/Ni foam(CoFeOOHNS/NF)electrode delivers 100 mA·cm^(−2) in alkaline at an overpotential of 275 mV and can stably electrocatalyze water oxidation for at least 35 h at 100 mA·cm^(−2).Meanwhile,the alkaline full water splitting electrolyzer achieves a current density of 10 mA·cm^(−2) only at 1.522 V for CoFeOOHNS/NF‖Pt/C/NF,which is much lower than that of Ru/C/NF‖Pt/C/NF(1.655 V@10 mA·cm^(−2)).This work paves the way for in-situ synergetic modification engineering of electrochemical active components.展开更多
A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD), differential scanning calorimetry (DSC) ...A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite α-Ee (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.展开更多
Extraordinary electronic properties can emerge at the interfaces between metal oxides[1-10].Interfacial behaviors have enabled a wide range of applications from electronic communication,energy conversion and storage,t...Extraordinary electronic properties can emerge at the interfaces between metal oxides[1-10].Interfacial behaviors have enabled a wide range of applications from electronic communication,energy conversion and storage,to data processing and memory.In recent years,unprecedented progress has been made in exploring and exploiting the emergent and/or enhanced properties of these interfaces,and it is becoming clear that interface engineering provides a new opportunity for advanced devices in the near future.The capability of using interfaces to manipulate material properties offers an effective means to achieve intriguing phenomena.展开更多
The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interf...The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.展开更多
The kinetics of formation of crystal boron was studied by X-ray structure and differential-thermal analyses. The enthalpy of transition of amorphous boron to crystal boron with formation of an intermediate non-equilib...The kinetics of formation of crystal boron was studied by X-ray structure and differential-thermal analyses. The enthalpy of transition of amorphous boron to crystal boron with formation of an intermediate non-equilibrium phase was determined by the calorimetric method. Studies were carried out by using the differential scanning calorimeter SETARAM. Amorphous boron received by diboron cracking was used as the starting material. The test sample is cha- racterized by stability even at a high temperature. When heated, amorphous boron first transforms to crystal boron of α-modification, and during a further heating, there occur several phase transitions, which means the transition of α-rhombohedric crystal boron to the β'?and β''?metastable states. Studies of various modifications were carried out by radiographic and electro-optic methods. The high sensitiveness of the calorimeter made it possible to control temperature in the oven, make records and detect even the smallest thermal effects.展开更多
The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitax...The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon(a-Si:H)/c-Si interface is suppressed at high pressure(hp) and occurs at low pressure(1p).The hp a-Si:H,as a purely amorphous layer,is incorporated in the 1p-epi-Si/c-Si interface.We find that:(i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough;(ii) with the increase of the inserted hp layer thickness,lp epi-Si at the interface is suppressed,and the fraction of a-Si:H in the thin films increases and that of c-Si decreases,corresponding to the increasing minority carrier lifetime of the sample.Not only the epitaxial results,but also the quality of the thin films at hp also surpasses that at lp,leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase.展开更多
Amorphous La0.7Zn0.3MnO3(LZMO) films were deposited on p+-Si substrates by sol-gel method at low temperature of 450 ℃.The Ag/LZMO/p+-Si device exhibits invertible bipolar resistive switching and the RHRS/RLRS was...Amorphous La0.7Zn0.3MnO3(LZMO) films were deposited on p+-Si substrates by sol-gel method at low temperature of 450 ℃.The Ag/LZMO/p+-Si device exhibits invertible bipolar resistive switching and the RHRS/RLRS was about 104-106 at room temperature which can be kept over 103 switching cycles.Better endurance characteristics were observed in the Ag/LZMO/p+-Si device,the VSet and the VReset almost remained after 103 endurance switching cycles.According to electrical analyses,the conductor mechanism was in low resistor state(LRS) governed by the filament conductor and in the high state(HRS) dominated by the trapscontrolled space-charge-limited current(SCLC) conductor.展开更多
Interface properties of nano-silica/thermotropic liquid crystalline polyesters (TLCP) composites were investigated by X-ray diffraction analysis and differential scanning calorimetory. The crystallinity of TLCP in the...Interface properties of nano-silica/thermotropic liquid crystalline polyesters (TLCP) composites were investigated by X-ray diffraction analysis and differential scanning calorimetory. The crystallinity of TLCP in the composites drastically decreased with an increase of nano-silica content, depending on the surface area of the silica particles. Little size effects (40 - 400 nm) in the particles and strong interaction between silica surface and the C=O moieties of TLCP were observed by IR analysis. The glass transition temperature of TLCP (。C higher than that in bulk.展开更多
In this work the statistical mechanical equation of state was developed for volumetric properties of crystalline and amorphous polymer blends.The Ihm-Song-Mason equations of state(ISMEOS) based on temperature and dens...In this work the statistical mechanical equation of state was developed for volumetric properties of crystalline and amorphous polymer blends.The Ihm-Song-Mason equations of state(ISMEOS) based on temperature and density at melting point(T_m and ρ_m) as scaling constants were developed for crystalline polymers such as poly(propylene glycol) + poly(ethylene glycol)-200(PPG + PEG-200),poly(ethylene glycol) methyl ether-300(PEGME-350) + PEG-200 and PEGME-350 + PEG-600.Furthermore,for amorphous polymer blends containing poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) + polystyrene(PS) and PS + poly(vinylmethylether)(PVME),the density and surface tension at glass transition(ρ_g and γ_g) were used for estimation of second Virial coefficient.The calculation of second Virial coefficients(B_2),effective van der Waals co-volume(b) and correction factor(α) was required for judgment about applicability of this model.The obtained results by ISMEOS for crystalline and amorphous polymer blends were in good agreement with the experimental data with absolute average deviations of 0.84%and 1.04%,respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51361022 and 61574072)the Postdoctoral Science Foundation of Jiangxi Province,China(Grant No.2015KY12)
文摘Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface passivation properties.The minority carrier lifetime of symmetric heterostructure is measured by using Sinton Consulting WCT-120 lifetime tester system,and a simple method of determining the interface state density(D_(it)) from lifetime measurement is proposed.The interface state density(D_(it)) measurement is also performed by using deep-level transient spectroscopy(DLTS) to prove the validity of the simple method.The microstructures and hydrogen bonding configurations of a-Si:H films with different hydrogen dilutions are investigated by using spectroscopic ellipsometry(SE) and Fourier transform infrared spectroscopy(FTIR) respectively.Lower values of interface state density(D_(it)) are obtained by using a-Si:H film with more uniform,compact microstructures and fewer bulk defects on crystalline silicon deposited by HWCVD.
基金Supported by Program for the National Natural Science Foundation of China (Nos. 51577021 and U1704253)the Fundamental Research Funds for the Central Universities (DUT17GF107)
文摘Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.
文摘Crystalline behavior and magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X ray diffraction (XRD) and the vibrating sample magnetometer (VSM). Neither glass transition nor supercooled liquid region before crystallization was observed for the as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) bulk amorphous alloys. The glass forming ability can be improved significantly by the addition of Co. The as cast Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys show hard magnetic behavior. With the addition of Co content, intrinsic coercivity ( i H c) increases while the saturation magnetization( σ s) and remanence ( σ r) decrease. The Curie temperature for the as cast Nd 60 Fe 30- x Al 10 Co x alloys increases from 451 K for x =0 to 468 K for x =10. Some precipitation of crystalline phases does not affect the hard magnetic properties of Nd 60 Fe 30- x Al 10 Co x (x =0,5,10) alloys, while the hard magnetic behavior disappears quickly after the alloys being completely crystallized.
基金Funded by the Fundamental Research Funds for the Central Universities(No.2018CDXYCL0018)the National Natural Science Foundation of China(NSFC)(No.51678093)the National Youth Fund(No.51402029)
文摘Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly affected by the conditions of hydrothermal treatment including siliceous materials, temperature increase rate and isothermal periods. In this study, the influence of hydrothermal conditions on the growth of nano-crystalline CSH was investigated based on XRD analysis. Results showed that siliceous materials with amorphous nature(i e, nano silica powder) are beneficial to synthesize pure amorphous CSH, while the use of more crystallized siliceous materials(i e, diatomite and quartz powder) leads to producing crystalline CSH. Results also indicate that the formation of tobermorite and xonotlite is greatly affected by the temperature rise rate during hydrothermal treatment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372256 and 11572259)the 111 Project(Grant No.B07050)+1 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-12-1046)the Program for New Scientific and Technological Star of Shaanxi Province,China(Grant No.2012KJXX-39)
文摘The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous(C/A) Mg/Mg–Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation(1210) [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg–Al nanocomposites, the ‘double hump' behavior can be observed in all the stress–strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976016)the Program for Innovative Research Team in Science and Technology in University of Henan Province (IRTSTUHN),China (Grant No. 2012IRTSTHN004)the Foundation Co-established by the Province and the Ministry in Henan University,China (Grant No. SBGJ090503)
文摘The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated.Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33MnO3 /F:SnO2 junctions are obtained at room temperature.Dramatically,the coexistence of two switching polarities could be reversibly adjusted by an applied voltage range.The results allocated those two switching types to areas of different defect densities beneath the same electrode.The migration of oxygen vacancies and the trapping effect of electrons under an applied electric field play an important role.An interface-effect-related resistance switching is proposed in an amorphous Pr0.67Sr0.33MnO3-based memory cell.
文摘Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells.
文摘Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric film capacitors. Two prominent examples of polymer dielectrics Polyetherimide (PEI) and Poly (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) have been discussed. Polyetherimide (PEI) is an amorphous polymer recognized for its high-temperature capability, low dielectric loss and high dielectric strength. THV is a semi-crystalline polymer with high dielectric constant, high-temperature capability and charge-discharge efficiency. The primary focus of this paper is to introduce the reader to the fabrication procedures and characterization techniques used in research labs for processing of dielectric polymers. The fabrication and characterization process of both polymers has been discussed in detail to shed the light on experimental process in this area of research.
基金This work is supported by the National Natural Science Foundation of China(52272181,51532001,U1910208,51872016)China Postdoctoral Science Foundation(2020TQ0023 and 2020M680295).
文摘Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomaterials can further enhance electrochemical performance.To date,various feasible strategies have been proposed,of which amorphous/crystalline(a-c)heterointerface engineering is deemed an effective approach to break through the inherent activity limitations of electrode materials.The following review discusses recent research progress on a-c heterointerfaces for enhanced electrochemical processes.The general strategies for synthesizing ac heterojunctions are first summarized.Subsequently,we highlight various advanced applications of a-c heterointerfaces in the field of electrochemistry,including for supercapacitors,batteries,and electrocatalysts.We also elucidate the synergistic mechanism of the crystalline phase and amorphous phase for electrochemical processes.Lastly,we summarize the challenges,present our personal opinions,and offer a critical perspective on the further development of a-c nanomaterials.
文摘Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the(W+Ce O2)/2024 Al composite were investigated.The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope,respectively.The consolidation of composites consisted of two thermal processes:vacuum degassing(VD)and hot isostatic pressing(HIP).During consolidation,not only the three major elements(Al,W,and Ce)but also the alloying elements(Mg and Cu)in the Al matrix contributed to amorphization.At VD and HIP temperatures of 723 K and763 K,interfacial amorphous layers were formed within the composite.Three diffusion processes were necessary for interfacial amorphization:(a)long-range diffusion of Mg from the Al matrix to the interfaces during VD;(b)long-range diffusion of Cu from the Al matrix to the interfaces during HIP;(c)short-range diffusion of W toward the Al matrix during HIP.The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM(TM:transition metals)amorphous system.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB301900 and 2011CB922100)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The time and temperature dependence of threshold voltage shift under positive-bias stress(PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide(a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτ stress= 0.72 eV for the PBS process and an average effective energy barrier Eτ recovery= 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development.
基金support from the National Key Research and Development Program of China(No.2020YFB1506300)the National Natural Science Foundation of China(Nos.21625102,21971017,21922502,22075018,51991344,52025025,and 52072400)+1 种基金Beijing Institute of Technology Research Fund Program,The Natural Science Foundation of Hainan Province(No.2019RC166)Beijing Natural Science Foundation(No.Z190010).
文摘Cobalt hydroxide nanosheet is among the most popular oxygen evolution reaction(OER)catalyst yet still suffers from sluggish catalytic kinetics,limited activity,and poor stability.Here,an efficient in situ electrochemical reconstructed CoFe-hydroxides derived OER electrocatalyst was reported.The introduction of Fe promoted the transformation of Co^(2+)into Co^(3+)in CoFehydroxides nanosheet,along with the formation of abundant amorphous/crystalline interfaces.Thanks for the retained nanosheet microstructure,high valence Co^(3+)and Fe^(3+)species,and the amorphous/crystalline heterostructure interfaces,the as-designed electrochemical reconstructed CoFeOOH nanosheet/Ni foam(CoFeOOHNS/NF)electrode delivers 100 mA·cm^(−2) in alkaline at an overpotential of 275 mV and can stably electrocatalyze water oxidation for at least 35 h at 100 mA·cm^(−2).Meanwhile,the alkaline full water splitting electrolyzer achieves a current density of 10 mA·cm^(−2) only at 1.522 V for CoFeOOHNS/NF‖Pt/C/NF,which is much lower than that of Ru/C/NF‖Pt/C/NF(1.655 V@10 mA·cm^(−2)).This work paves the way for in-situ synergetic modification engineering of electrochemical active components.
基金the National Natural Science Foundation of China(No. 50871061 and 50471052)the Shandong Science and Research Foundation (No. Y2005F02)+1 种基金the Project for New Century Talent of Ministry of Education (No. NCET-06-584)Alexander von Humboldt Foundation
文摘A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite α-Ee (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.
基金supported by the National Nature Science Foundation of China(U1530402,17N1041)the CINT User Program+2 种基金the support by the U.S.National Science Foundation(ECCS-1902623)the support by the National Nature Science Foundation of China(51728202)the Center for Nanoscale Materials,an Office of Science user facility,supported by the U.S.Department of Energy(DE-AC02-06CH11357)
文摘Extraordinary electronic properties can emerge at the interfaces between metal oxides[1-10].Interfacial behaviors have enabled a wide range of applications from electronic communication,energy conversion and storage,to data processing and memory.In recent years,unprecedented progress has been made in exploring and exploiting the emergent and/or enhanced properties of these interfaces,and it is becoming clear that interface engineering provides a new opportunity for advanced devices in the near future.The capability of using interfaces to manipulate material properties offers an effective means to achieve intriguing phenomena.
基金Foundation item: Joint Seismological Foundation of China (106076)National Natural Science Foundation of China (40474049, 40334040).
文摘The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.
文摘The kinetics of formation of crystal boron was studied by X-ray structure and differential-thermal analyses. The enthalpy of transition of amorphous boron to crystal boron with formation of an intermediate non-equilibrium phase was determined by the calorimetric method. Studies were carried out by using the differential scanning calorimeter SETARAM. Amorphous boron received by diboron cracking was used as the starting material. The test sample is cha- racterized by stability even at a high temperature. When heated, amorphous boron first transforms to crystal boron of α-modification, and during a further heating, there occur several phase transitions, which means the transition of α-rhombohedric crystal boron to the β'?and β''?metastable states. Studies of various modifications were carried out by radiographic and electro-optic methods. The high sensitiveness of the calorimeter made it possible to control temperature in the oven, make records and detect even the smallest thermal effects.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.E2015201203)the International Society for Theoretical Chemical Physics of China(Grant No.2015DFE62900)
文摘The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon(a-Si:H)/c-Si interface is suppressed at high pressure(hp) and occurs at low pressure(1p).The hp a-Si:H,as a purely amorphous layer,is incorporated in the 1p-epi-Si/c-Si interface.We find that:(i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough;(ii) with the increase of the inserted hp layer thickness,lp epi-Si at the interface is suppressed,and the fraction of a-Si:H in the thin films increases and that of c-Si decreases,corresponding to the increasing minority carrier lifetime of the sample.Not only the epitaxial results,but also the quality of the thin films at hp also surpasses that at lp,leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase.
基金Funded by the National Natural Science Foundation of China(No.51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘Amorphous La0.7Zn0.3MnO3(LZMO) films were deposited on p+-Si substrates by sol-gel method at low temperature of 450 ℃.The Ag/LZMO/p+-Si device exhibits invertible bipolar resistive switching and the RHRS/RLRS was about 104-106 at room temperature which can be kept over 103 switching cycles.Better endurance characteristics were observed in the Ag/LZMO/p+-Si device,the VSet and the VReset almost remained after 103 endurance switching cycles.According to electrical analyses,the conductor mechanism was in low resistor state(LRS) governed by the filament conductor and in the high state(HRS) dominated by the trapscontrolled space-charge-limited current(SCLC) conductor.
文摘Interface properties of nano-silica/thermotropic liquid crystalline polyesters (TLCP) composites were investigated by X-ray diffraction analysis and differential scanning calorimetory. The crystallinity of TLCP in the composites drastically decreased with an increase of nano-silica content, depending on the surface area of the silica particles. Little size effects (40 - 400 nm) in the particles and strong interaction between silica surface and the C=O moieties of TLCP were observed by IR analysis. The glass transition temperature of TLCP (。C higher than that in bulk.
文摘In this work the statistical mechanical equation of state was developed for volumetric properties of crystalline and amorphous polymer blends.The Ihm-Song-Mason equations of state(ISMEOS) based on temperature and density at melting point(T_m and ρ_m) as scaling constants were developed for crystalline polymers such as poly(propylene glycol) + poly(ethylene glycol)-200(PPG + PEG-200),poly(ethylene glycol) methyl ether-300(PEGME-350) + PEG-200 and PEGME-350 + PEG-600.Furthermore,for amorphous polymer blends containing poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) + polystyrene(PS) and PS + poly(vinylmethylether)(PVME),the density and surface tension at glass transition(ρ_g and γ_g) were used for estimation of second Virial coefficient.The calculation of second Virial coefficients(B_2),effective van der Waals co-volume(b) and correction factor(α) was required for judgment about applicability of this model.The obtained results by ISMEOS for crystalline and amorphous polymer blends were in good agreement with the experimental data with absolute average deviations of 0.84%and 1.04%,respectively.