A novel method was presented to create composite micelles of amphiphilic copolymers and Ag nanoparticles(NPs) in a three-dimensional co-flow focusing microfluidic device(3D CFMD). Self-assembly of the copolymers was i...A novel method was presented to create composite micelles of amphiphilic copolymers and Ag nanoparticles(NPs) in a three-dimensional co-flow focusing microfluidic device(3D CFMD). Self-assembly of the copolymers was initiated by the fast mixing of water and a blend dispersion of hydrophobic Ag NPs and amphiphilic copolymers. At the same time, the hydrophobic Ag NPs enter the core of copolymer micelles, based on the hydrophobic interaction. The copolymer-Ag NPs composite micelles have a core-shell structure with copolymer shell and Ag NPs core. COMSOL Multiphysics is used to simulate the concentration distribution of copolymers and Ag NPs under different flow rates. Co-assembly microfluidic conditions are determined based on simulation results. Under suitable microfluidic conditions, both block copolymers and gradient copolymers can co-assemble with hydrophobic Ag NPs to form composite micelles, respectively. This microfluidic coassembly method will have a good prospect in the preparation of composite micelles of amphiphilic copolymers and metal nanoparticles.展开更多
Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS usin...Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS chain...展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51873167 and 50803048)
文摘A novel method was presented to create composite micelles of amphiphilic copolymers and Ag nanoparticles(NPs) in a three-dimensional co-flow focusing microfluidic device(3D CFMD). Self-assembly of the copolymers was initiated by the fast mixing of water and a blend dispersion of hydrophobic Ag NPs and amphiphilic copolymers. At the same time, the hydrophobic Ag NPs enter the core of copolymer micelles, based on the hydrophobic interaction. The copolymer-Ag NPs composite micelles have a core-shell structure with copolymer shell and Ag NPs core. COMSOL Multiphysics is used to simulate the concentration distribution of copolymers and Ag NPs under different flow rates. Co-assembly microfluidic conditions are determined based on simulation results. Under suitable microfluidic conditions, both block copolymers and gradient copolymers can co-assemble with hydrophobic Ag NPs to form composite micelles, respectively. This microfluidic coassembly method will have a good prospect in the preparation of composite micelles of amphiphilic copolymers and metal nanoparticles.
基金the National Natural Science Foundation of China (Nos.50673086 and 50633010).
文摘Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS chain...