Although stimulus frequency otoacoustic emissions (SFOAEs) have been used as a non-invasive measure of cochlear mechanics, clinical and experimental application of SFOAEs has been limited by difficulties in accurately...Although stimulus frequency otoacoustic emissions (SFOAEs) have been used as a non-invasive measure of cochlear mechanics, clinical and experimental application of SFOAEs has been limited by difficulties in accurately deriving quantitative information from sound pressure measured in the ear canal. In this study, a novel signal processing method for multicomponent analysis (MCA) was used to measure the amplitude and delay of the SFOAE. This report shows the delay-frequency distribution of the SFOAE measured from the human ear. A low level acoustical suppressor near the probe tone significantly suppressed the SFOAE, strongly indicating that the SFOAE was generated at characteristic frequency locations. Information derived from this method may reveal more details of cochlear mechanics in the human ear.展开更多
We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is...We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.展开更多
In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determ...In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations.展开更多
Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two p...Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.展开更多
基金Supported in part by research grants from the National Institute of Deafness and Other Communication Disorders(R01 DC 00141 and R03 DC033642)the National Institutes of Health+2 种基金the Research Fund of the American Otological Societythe Medical Research Foundation of OregonVA RR&D Center Grant RCTR-597-0160,Portland,VAMC
文摘Although stimulus frequency otoacoustic emissions (SFOAEs) have been used as a non-invasive measure of cochlear mechanics, clinical and experimental application of SFOAEs has been limited by difficulties in accurately deriving quantitative information from sound pressure measured in the ear canal. In this study, a novel signal processing method for multicomponent analysis (MCA) was used to measure the amplitude and delay of the SFOAE. This report shows the delay-frequency distribution of the SFOAE measured from the human ear. A low level acoustical suppressor near the probe tone significantly suppressed the SFOAE, strongly indicating that the SFOAE was generated at characteristic frequency locations. Information derived from this method may reveal more details of cochlear mechanics in the human ear.
基金supported by the Natural Science Foundation of Jiangxi Province,China (Grant No 2007GZW0171)the Foundation of Education Department of Jiangxi Province,China (Grant No [2007] 136)
文摘We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.
文摘In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations.
基金supported by the National Natural Science Foundation of China under Grant Nos.61275165,61201401,and 61307098
文摘Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.