A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedu...A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedure.Itis found that there are three different typies of stochastic resonance in the model:the conventional form of stochasticresonance,the stochastic resonance in the broad sense,and the bona fide SR.展开更多
We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multipl...We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).展开更多
A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cro...A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross- correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10275025
文摘A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedure.Itis found that there are three different typies of stochastic resonance in the model:the conventional form of stochasticresonance,the stochastic resonance in the broad sense,and the bona fide SR.
基金National Program for Support of Top-Notch Young ProfessionalsNational Natural Science Foundation of China(NSFC)(11574001,11274131,61222502)Program for New Century Excellent Talents in University(NCET)(NCET-11-0182)
文摘We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).
基金The project supported by National Natural Science Foundation of China under Grant No.10275025
文摘A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross- correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.