Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina...Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.展开更多
Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphoru...Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs.展开更多
We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
A 1.1 - 1.2GHz CMOS high phase accuracy,low amplitude mismatch quadrature LO driver is presented,which consists of a high frequency amplifier,an integrated poly phase filter, and an I/Q phase and magnitude calibration...A 1.1 - 1.2GHz CMOS high phase accuracy,low amplitude mismatch quadrature LO driver is presented,which consists of a high frequency amplifier,an integrated poly phase filter, and an I/Q phase and magnitude calibration circuit(PMCC). The proposed PMCC uses a feed-forward calibration technique. It improves the phase accuracy and reduces the amplitude mismatch with low power consumption. Simulation results show that phase error with PMCC is reduced to about one half and the amplitude mismatch is reduced to about one tenth, when compared to the LO driver without PMCC. Moreover,the calibration circuit also functions as a buffer to drive mixers, thus no additional buffer is needed in this design. The LO driver is implemented in a TSMC 0.25μm CMOS process. Experimental results show that the LO driver achieves high quadrature accuracy (〈2°) and low amplitude mismatch (0. 1%). It has about 5.25dB gain and dissipates 6mA from the 2.5V power supply. The size of the die area is only 1.0mm×1.0mm.展开更多
An automatic IQ phase calibration method implemented in a 2.4GHz direct conversion receiver is proposed. It uses a delay locked loop (DLL) with a proposed quadrature phase detector to greatly reduce the phase error....An automatic IQ phase calibration method implemented in a 2.4GHz direct conversion receiver is proposed. It uses a delay locked loop (DLL) with a proposed quadrature phase detector to greatly reduce the phase error. The receiver is fabricated in a 0.18μm CMOS process. Measurements show that the IQ phase error can be calibrated within 1°,which satisfies the system requirement.展开更多
If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)ban...If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)band,the reported metalenses still do not obtain the perfect and strict single-handed CP,because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP(LCP)and right-handed CP(RCP)components.In this paper,a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion.Also,we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states,which can simply manipulate the focusing for incident linear polarization(LP)THz wave in three polarization conversion states,in-cluding LP without conversion,LCP and RCP.Moreover,the polarization conversion behavior is reversible,that is,the THz metalens can convert not only the LP into arbitrary single-handed CP,but also the LCP and RCP into two perpen-dicular LP,respectively.The metalens is expected to be used in advanced THz camera,as a great candidate for tradi-tional CPL and focusing lens group,and also shows potential application in polarization imaging with discriminating LCP and RCP.展开更多
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t...The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.展开更多
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit...The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.展开更多
Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the pres...Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.展开更多
The X-discontinuity,which appears at the depth of approximately 300 km,is an important seismic interface with positive velocity contrasts in the upper mantle.Detecting its presence and topography can be useful to unde...The X-discontinuity,which appears at the depth of approximately 300 km,is an important seismic interface with positive velocity contrasts in the upper mantle.Detecting its presence and topography can be useful to understand phase transformations of relevant mantle minerals under the high-temperature and high-pressure circumstance of the Earth's interior.In this study,we detect the X-discontinuity beneath the Ryukyu subduction zone using five intermediate-depth events recorded by the dense Alaska Regional Network(AK).The X-discontinuity is successfully revealed from the robust slant stacking of the secondary down-going and converting Sd P phases.From the depth distribution of conversion points,we find that the X-discontinuity's depth ranges between 269 km and 313 km,with an average depth of 295 km.All the conversion points are located beneath the down-dipping side of the Philippine Sea slab.From energy comparisons in vespagrams for observed and synthetic seismograms,the strong converted energy is more likely from a thin high-velocity layer,and the S-wave velocity jumps across the X-discontinuity are up to 5% to 8% with an average of 6.0%.According to previous petrological and seismological studies,the X-discontinuity we detected can be interpreted as the phase transformation of coesite to stishovite in eclogitic materials within the oceanic crust.展开更多
Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous elec...Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by operating voltage and capacity limits.Different from the conventional intercalation/de-intercalation mechanism,Bi_(2)O_(3) implements charge storage by a reversible phase conversion mechanism.Herein,taking Bi_(2)O_(3) electrode with wide potential window(from-1.2 to 1 V vs.saturated calomel electrode)and high capacity as battery-type anode,we propose that the overall performance of aqueous BSHs can be greatly upgraded under neutral condition.By paring with stable layer-structuredδ-MnO_(2) cathode,a sodium-ion Bi_(2)O_(3)//MnO_(2) BSH with an ultrahigh voltage of 2.4 V in neutral sodium sulfate electrolyte is developed for the first time.This hybrid device exhibits high capacity(~215 C g^(-1) at 1 mA cm^(-2)),relatively long lifespan(~77.2%capacity retention after 1500 cycles),remarkable energy density(71.7 Wh kg^(-1)@400.5 W kg^(-1))and power density(3204.3 W kg^(-1)@18.8 Wh kg^(-1)).Electrochemical measurements combining a set of spectroscopic techniques reveal the reversible phase conversion between bismuth oxide and metallic bismuth(Bi_(2)O_(3)?Bi0)through Bi^(2+) transition phase in neutral sodium sulfate solution,which can deliver multielectron transfer up to 6,leading to the high-energy BSHs.Our work sheds light on the feasibility of using Bi_(2)O_(3) electrode under neutral condition to address the issue of narrow voltage and low capacity for aqueous BSHs.展开更多
We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us ...We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us the Estimates of the A(α) amplitude.展开更多
Estimating the quality factor Q accurately signifi cantly improves the seismic data resolution and reservoir characterization.The commonly used log-spectral ratio method uses least-squares fi tting to obtain Q values ...Estimating the quality factor Q accurately signifi cantly improves the seismic data resolution and reservoir characterization.The commonly used log-spectral ratio method uses least-squares fi tting to obtain Q values and involves only the amplitude information of seismic data while neglecting phase information.This paper proposes a joint interval Q inversion method based on the spectral ratio method and employs both amplitude and phase information to improve the accuracy.Based on the assumption that Q is independent of frequency,the nonlinear relation between the Q value and the two types of information is jointly used to construct an objective function,which clarifies the quantitative relation between amplitude spectrum,phase information,and Q value.The interval Q value can be inverted by calculating the minimum value of the objective function.The model test exhibits that the proposed method has higher precision and stability than the spectral ratio method;furthermore,the application to field data demonstrates that accurate Q inversion results are consistent with reservoir characteristics.展开更多
This paper proposes a new amplitude and phase demodulation scheme different from the traditional method for AM-FM signals. The traditional amplitude demodulation assumes that the amplitude should be non-negative, and ...This paper proposes a new amplitude and phase demodulation scheme different from the traditional method for AM-FM signals. The traditional amplitude demodulation assumes that the amplitude should be non-negative, and the phase is obtained under the case of non-negative amplitude, which approximates the true amplitude and phase but distorts the true amplitude and phase in some cases. In this paper we assume that the amplitude is signed (zero, positive or negative), and the phase is obtained under the case of signed amplitude by optimization, as is called signed demodulation. The main merit of the signed demodulation lies in the revelation of senseful physi- cal meaning on phase and frequency. Experiments on the real-world data show the efficiency of the method.展开更多
Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The s...Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The synchronization regime can be divided into three regimes. For small mismatches, the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases, the amplitudes and phases of oscillators are correlated) and the amplitudes will dominate the synchronous dynamics for very large mismatches. The lag time among phases exhibits a power law when phase synchronization is achieved.展开更多
Unlike the real-valued plane wave reflection coefficient(PRC)at the pre-critical incident angles,the frequency-and depth-dependent spherical-wave reflection coefficient(SRC)is more accurate and always a complex value,...Unlike the real-valued plane wave reflection coefficient(PRC)at the pre-critical incident angles,the frequency-and depth-dependent spherical-wave reflection coefficient(SRC)is more accurate and always a complex value,which contains more reflection amplitude and phase information.In near field,the imaginary part of complex SRC(phase)cannot be ignored,but it is rarely considered in seismic inversion.To promote the practical application of spherical-wave seismic inversion,a novel spherical-wave inversion strategy is implemented.The complex-valued spherical-wave synthetic seismograms can be obtained by using a simple harmonic superposition model.It is assumed that geophone can only record the real part of complex-valued seismogram.The imaginary part can be further obtained by the Hilbert transform operator.We also propose the concept of complex spherical-wave elastic impedance(EI)and the complex spherical-wave EI equation.Finally,a novel complex spherical-wave EI inversion approach is proposed,which can fully use the reflection information of amplitude,phase,and frequency.With the inverted complex spherical-wave EI,the velocities and density can be further extracted.Synthetic data and field data examples show that the elastic parameters can be reasonably estimated,which illustrate the potential of our spherical-wave inversion approach in practical applications.展开更多
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ...Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.展开更多
An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aper...An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated.展开更多
The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dyna...The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dynamically coherence induced by the coupling fields, modified reservoir-induced transparency and quantum interference-induced transparency emerge simultaneously. Their interaction leads to ultra-narrow spectral structure. As a result of closed-loop configuration, these features can be manipulated by the amplitudes and relative phase of the coherently driven fields. The position and width of PBG also have an influence on the spectra. The theoretical studies can provide us with more efficient methods to control the atomic absorption–dispersion properties, which have applications in optical switching and slow light.展开更多
The study of phased array radar( PAR) pulse amplitude sequence characteristics is the key to understand the radar's working state and its beam's scanning manner.According to the principle of antenna pattern fo...The study of phased array radar( PAR) pulse amplitude sequence characteristics is the key to understand the radar's working state and its beam's scanning manner.According to the principle of antenna pattern formation and the searching and tracking modes of beams,this paper analyzes the characteristics and differences of pulse amplitude sequence when the radar beams work in searching and tracking modes respectively.Then an optimal sorting model of pulse amplitude sequence is established based on least-squares and curve-fitting methods.This method is helpful for acquiring the current working state of the radar and recognizing its instantaneous beam pointing by sorting the pulse amplitude sequence without the necessity to estimate the antenna pattern.展开更多
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(52488201)the National Natural Science Foundation of China(52376209)+1 种基金the China Postdoctoral Science Foundation(2020T130503 and 2020M673386)the China Fundamental Research Funds for the Central Universities.
文摘Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.
基金financially supported by National Nature Science Foundation of China(Grant No.22272175,21805278,52072323,52122211)the Fujian Science and Technology Planning Projects of China(2020T3022,2022T3067)+3 种基金the National Key R&D Program of China(No.2021YFB3500400)the Future-prospective and Stride-across Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-GH02)the Youth Innovation Foundation of Xiamen City(Grant No.3502Z20206083)the Opening Project of PCOSS,Xiamen University(Grant No.202014)。
文摘Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs.
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
文摘A 1.1 - 1.2GHz CMOS high phase accuracy,low amplitude mismatch quadrature LO driver is presented,which consists of a high frequency amplifier,an integrated poly phase filter, and an I/Q phase and magnitude calibration circuit(PMCC). The proposed PMCC uses a feed-forward calibration technique. It improves the phase accuracy and reduces the amplitude mismatch with low power consumption. Simulation results show that phase error with PMCC is reduced to about one half and the amplitude mismatch is reduced to about one tenth, when compared to the LO driver without PMCC. Moreover,the calibration circuit also functions as a buffer to drive mixers, thus no additional buffer is needed in this design. The LO driver is implemented in a TSMC 0.25μm CMOS process. Experimental results show that the LO driver achieves high quadrature accuracy (〈2°) and low amplitude mismatch (0. 1%). It has about 5.25dB gain and dissipates 6mA from the 2.5V power supply. The size of the die area is only 1.0mm×1.0mm.
文摘An automatic IQ phase calibration method implemented in a 2.4GHz direct conversion receiver is proposed. It uses a delay locked loop (DLL) with a proposed quadrature phase detector to greatly reduce the phase error. The receiver is fabricated in a 0.18μm CMOS process. Measurements show that the IQ phase error can be calibrated within 1°,which satisfies the system requirement.
基金supported by the National Natural Science Foundation of China(Nos.61675147,61735010 and 91838301)National Key Research and Development Program of China(No.2017YFA0700202)Basic Re-search Program of Shenzhen(JCYJ20170412154447469).
文摘If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)band,the reported metalenses still do not obtain the perfect and strict single-handed CP,because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP(LCP)and right-handed CP(RCP)components.In this paper,a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion.Also,we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states,which can simply manipulate the focusing for incident linear polarization(LP)THz wave in three polarization conversion states,in-cluding LP without conversion,LCP and RCP.Moreover,the polarization conversion behavior is reversible,that is,the THz metalens can convert not only the LP into arbitrary single-handed CP,but also the LCP and RCP into two perpen-dicular LP,respectively.The metalens is expected to be used in advanced THz camera,as a great candidate for tradi-tional CPL and focusing lens group,and also shows potential application in polarization imaging with discriminating LCP and RCP.
文摘The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.
基金Project(50905037) supported by the National Natural Science Foundation of ChinaProject(20092304120014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+2 种基金 Project(20100471021) supported by the China Postdoctoral Science Foundation Project(LBH-Q09134) supported by Heilongjiang Postdoctoral Science-Research Foundation,China Project (HEUFT09013) supported by the Foundation of Harbin Engineering University,China
文摘The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)the Beijing Natural Science Foundation(Grant No.1212014)+3 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central Universities,and Youth Innovation Promotion Association CAS.
文摘Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.
基金supported by the China Postdoctoral Science Foundation(119103S282)National Natural Science Foundation of China(41704090,41474040 and 41504050)
文摘The X-discontinuity,which appears at the depth of approximately 300 km,is an important seismic interface with positive velocity contrasts in the upper mantle.Detecting its presence and topography can be useful to understand phase transformations of relevant mantle minerals under the high-temperature and high-pressure circumstance of the Earth's interior.In this study,we detect the X-discontinuity beneath the Ryukyu subduction zone using five intermediate-depth events recorded by the dense Alaska Regional Network(AK).The X-discontinuity is successfully revealed from the robust slant stacking of the secondary down-going and converting Sd P phases.From the depth distribution of conversion points,we find that the X-discontinuity's depth ranges between 269 km and 313 km,with an average depth of 295 km.All the conversion points are located beneath the down-dipping side of the Philippine Sea slab.From energy comparisons in vespagrams for observed and synthetic seismograms,the strong converted energy is more likely from a thin high-velocity layer,and the S-wave velocity jumps across the X-discontinuity are up to 5% to 8% with an average of 6.0%.According to previous petrological and seismological studies,the X-discontinuity we detected can be interpreted as the phase transformation of coesite to stishovite in eclogitic materials within the oceanic crust.
基金supported by the National Natural Science Foundation of China (21872105, 22072107)the Science & Technology Commission of Shanghai Municipality (19DZ2271500)。
文摘Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by operating voltage and capacity limits.Different from the conventional intercalation/de-intercalation mechanism,Bi_(2)O_(3) implements charge storage by a reversible phase conversion mechanism.Herein,taking Bi_(2)O_(3) electrode with wide potential window(from-1.2 to 1 V vs.saturated calomel electrode)and high capacity as battery-type anode,we propose that the overall performance of aqueous BSHs can be greatly upgraded under neutral condition.By paring with stable layer-structuredδ-MnO_(2) cathode,a sodium-ion Bi_(2)O_(3)//MnO_(2) BSH with an ultrahigh voltage of 2.4 V in neutral sodium sulfate electrolyte is developed for the first time.This hybrid device exhibits high capacity(~215 C g^(-1) at 1 mA cm^(-2)),relatively long lifespan(~77.2%capacity retention after 1500 cycles),remarkable energy density(71.7 Wh kg^(-1)@400.5 W kg^(-1))and power density(3204.3 W kg^(-1)@18.8 Wh kg^(-1)).Electrochemical measurements combining a set of spectroscopic techniques reveal the reversible phase conversion between bismuth oxide and metallic bismuth(Bi_(2)O_(3)?Bi0)through Bi^(2+) transition phase in neutral sodium sulfate solution,which can deliver multielectron transfer up to 6,leading to the high-energy BSHs.Our work sheds light on the feasibility of using Bi_(2)O_(3) electrode under neutral condition to address the issue of narrow voltage and low capacity for aqueous BSHs.
文摘We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us the Estimates of the A(α) amplitude.
基金supported by the National Natural Science Foundation of China(41774137)the National Grand Project for Science and Technology(2017ZX05032003)the Fundamental Research Funds for the Central Universities(19CX02002A)
文摘Estimating the quality factor Q accurately signifi cantly improves the seismic data resolution and reservoir characterization.The commonly used log-spectral ratio method uses least-squares fi tting to obtain Q values and involves only the amplitude information of seismic data while neglecting phase information.This paper proposes a joint interval Q inversion method based on the spectral ratio method and employs both amplitude and phase information to improve the accuracy.Based on the assumption that Q is independent of frequency,the nonlinear relation between the Q value and the two types of information is jointly used to construct an objective function,which clarifies the quantitative relation between amplitude spectrum,phase information,and Q value.The interval Q value can be inverted by calculating the minimum value of the objective function.The model test exhibits that the proposed method has higher precision and stability than the spectral ratio method;furthermore,the application to field data demonstrates that accurate Q inversion results are consistent with reservoir characteristics.
文摘This paper proposes a new amplitude and phase demodulation scheme different from the traditional method for AM-FM signals. The traditional amplitude demodulation assumes that the amplitude should be non-negative, and the phase is obtained under the case of non-negative amplitude, which approximates the true amplitude and phase but distorts the true amplitude and phase in some cases. In this paper we assume that the amplitude is signed (zero, positive or negative), and the phase is obtained under the case of signed amplitude by optimization, as is called signed demodulation. The main merit of the signed demodulation lies in the revelation of senseful physi- cal meaning on phase and frequency. Experiments on the real-world data show the efficiency of the method.
基金The project supported in part by National Natural Science Foundation of China under.Grant Nos. 70431002 and 10575010, the FANEDD, and the TRAP0YT in Higher Education Institutions of M0E
文摘Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The synchronization regime can be divided into three regimes. For small mismatches, the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases, the amplitudes and phases of oscillators are correlated) and the amplitudes will dominate the synchronous dynamics for very large mismatches. The lag time among phases exhibits a power law when phase synchronization is achieved.
基金the sponsorship of the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM0200016)National Natural Science Foundation of China(42030103,41974119)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province and Ministry of Science and Technology of China(2019RA2136)
文摘Unlike the real-valued plane wave reflection coefficient(PRC)at the pre-critical incident angles,the frequency-and depth-dependent spherical-wave reflection coefficient(SRC)is more accurate and always a complex value,which contains more reflection amplitude and phase information.In near field,the imaginary part of complex SRC(phase)cannot be ignored,but it is rarely considered in seismic inversion.To promote the practical application of spherical-wave seismic inversion,a novel spherical-wave inversion strategy is implemented.The complex-valued spherical-wave synthetic seismograms can be obtained by using a simple harmonic superposition model.It is assumed that geophone can only record the real part of complex-valued seismogram.The imaginary part can be further obtained by the Hilbert transform operator.We also propose the concept of complex spherical-wave elastic impedance(EI)and the complex spherical-wave EI equation.Finally,a novel complex spherical-wave EI inversion approach is proposed,which can fully use the reflection information of amplitude,phase,and frequency.With the inverted complex spherical-wave EI,the velocities and density can be further extracted.Synthetic data and field data examples show that the elastic parameters can be reasonably estimated,which illustrate the potential of our spherical-wave inversion approach in practical applications.
基金financially supported by National Natural Science Foundation of China(No.51902025)。
文摘Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.
文摘An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11447232 and 11204367)
文摘The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dynamically coherence induced by the coupling fields, modified reservoir-induced transparency and quantum interference-induced transparency emerge simultaneously. Their interaction leads to ultra-narrow spectral structure. As a result of closed-loop configuration, these features can be manipulated by the amplitudes and relative phase of the coherently driven fields. The position and width of PBG also have an influence on the spectra. The theoretical studies can provide us with more efficient methods to control the atomic absorption–dispersion properties, which have applications in optical switching and slow light.
文摘The study of phased array radar( PAR) pulse amplitude sequence characteristics is the key to understand the radar's working state and its beam's scanning manner.According to the principle of antenna pattern formation and the searching and tracking modes of beams,this paper analyzes the characteristics and differences of pulse amplitude sequence when the radar beams work in searching and tracking modes respectively.Then an optimal sorting model of pulse amplitude sequence is established based on least-squares and curve-fitting methods.This method is helpful for acquiring the current working state of the radar and recognizing its instantaneous beam pointing by sorting the pulse amplitude sequence without the necessity to estimate the antenna pattern.