Background:Jiaohong pills(JHP)consist of Pericarpium Zanthoxyli(PZ)and Radix Rehmanniae,two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive dec...Background:Jiaohong pills(JHP)consist of Pericarpium Zanthoxyli(PZ)and Radix Rehmanniae,two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment.However,the precise mechanisms underlying the beneficial effects remain elusive.Here,research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease.Methods:BV-2 cell inflammation was induced by lipopolysaccharide.AD mice were administered amyloid-β(Aβ).Behavioral experiments were used to evaluate learning and memory ability.The levels of nitric oxide(NO),tumor necrosis factor-alpha(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)were detected using enzymelinked immunosorbent assay(ELISA).The protein expressions of inducible nitric oxide synthase(iNOS)and the phosphorylation level of mitogen-activated protein kinase(MAPK)and nuclear factor kappa-B(NF-κB)were detected using Western blot.Nissl staining was used to detect neuronal degeneration.Results:The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO,IL-1β,TNF-α,and iNOS;increased the expression level of IL-10;and significantly decreased the phosphorylation levels of MAPK and NF-κB.These inhibitory effects were further confirmed in the AD mouse model.Meanwhile,JHP improved learning and memory function in AD mice,reduced neuronal damage,and enriched the Nissl bodies in the hippocampus.Moreover,IL-1βand TNF-αin the cortex were significantly downregulated after JHP administration,whereas IL-10showed increased expression.Conclusions:It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisi...In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.展开更多
Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo...Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.展开更多
目的探讨血清几丁质酶-3样蛋白1(chitinase 3-like protein 1,CHI3L1)与血液透析患者全因死亡和心脑血管疾病死亡之间的关系。方法本研究为前瞻性队列研究,病例来自2014年9月北京大学第三医院肾内科维持性血液透析患者。测定基线血CHI3L...目的探讨血清几丁质酶-3样蛋白1(chitinase 3-like protein 1,CHI3L1)与血液透析患者全因死亡和心脑血管疾病死亡之间的关系。方法本研究为前瞻性队列研究,病例来自2014年9月北京大学第三医院肾内科维持性血液透析患者。测定基线血CHI3L1水平,并根据中位数将患者分为高CHI3L1组和低CHI3L1组,随访9年。用Kaplan-Meier生存分析高CHI3L1组和低CHI3L1组患者生存率的差异,用限制性立方样条(restricted cubic spline,RCS)曲线描述CHI3L1与全因死亡率的剂量反应关系,用多因素COX比例风险模型分析患者全因死亡或心脑血管疾病死亡的独立危险因素。结果共纳入109例患者,随访时间为80.0(38.2,113.2)个月。Kaplan-Meier生存分析显示高CHI3L1组患者全因死亡率高于低CHI3L1组(χ^(2)=4.720,P=0.030),2组患者心脑血管疾病死亡率无明显差异(χ^(2)=1.954,P=0.162)。当CHI3L1≥199.8 ng/ml时,全因死亡率随着CHI3L1水平的增加有明显增加(HR=1.747,95%CI:1.035~2.947,P=0.037)。COX回归分析结果显示:年龄增加(HR=1.029,95%CI:1.001~1.056,P=0.040)、长透析龄(HR=2.251,95%CI:1.310~3.868,P=0.003)、收缩压高(HR=1.022,95%CI:1.008~1.036,P=0.002)、血肌酐低(HR=0.135,95%CI:0.064~0.283,P<0.001)均为血液透析患者全因死亡的独立危险因素,多种因素校正后高CHI3L1仍然是患者全因死亡的独立危险因素(HR=1.963,95%CI:1.010~3.813,P=0.047)。结论高CHI3L1组患者全因死亡率高于低CHI3L1组患者,血CHI3L1可能是血液透析患者全因死亡的独立预测指标。展开更多
基金The Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences,Grant/Award Number:CI2023E001TS02,CI2021A04905 and CI2021B015Key Technology Research Foundation of the National Institutes for Food and Drug Control,Grant/Award Number:GJJS-2022-7-1the National Natural Science Foundation of China,Grant/Award Number:82074103。
文摘Background:Jiaohong pills(JHP)consist of Pericarpium Zanthoxyli(PZ)and Radix Rehmanniae,two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment.However,the precise mechanisms underlying the beneficial effects remain elusive.Here,research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease.Methods:BV-2 cell inflammation was induced by lipopolysaccharide.AD mice were administered amyloid-β(Aβ).Behavioral experiments were used to evaluate learning and memory ability.The levels of nitric oxide(NO),tumor necrosis factor-alpha(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)were detected using enzymelinked immunosorbent assay(ELISA).The protein expressions of inducible nitric oxide synthase(iNOS)and the phosphorylation level of mitogen-activated protein kinase(MAPK)and nuclear factor kappa-B(NF-κB)were detected using Western blot.Nissl staining was used to detect neuronal degeneration.Results:The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO,IL-1β,TNF-α,and iNOS;increased the expression level of IL-10;and significantly decreased the phosphorylation levels of MAPK and NF-κB.These inhibitory effects were further confirmed in the AD mouse model.Meanwhile,JHP improved learning and memory function in AD mice,reduced neuronal damage,and enriched the Nissl bodies in the hippocampus.Moreover,IL-1βand TNF-αin the cortex were significantly downregulated after JHP administration,whereas IL-10showed increased expression.Conclusions:It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
文摘In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.
文摘Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.