To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
This paper studies the habitat selection of sables (Martes. zibellina) in spring adopting radio-tracking and GPS (Global Positioning System) in Daxing’an Mountains of China. Sables liked mature and elder forest, but ...This paper studies the habitat selection of sables (Martes. zibellina) in spring adopting radio-tracking and GPS (Global Positioning System) in Daxing’an Mountains of China. Sables liked mature and elder forest, but it avoided uncovered and young growth land. In spring sables had strong selection to medium cover-degree forest, but it avoided widen ground and especial high cover-degree forest. On the contrary sables didn’t have the strong selection to shrubs cover-degree, but strong selection to dominant tree species, slope degree and slope direction, especially sable liked medium and lower slope. At the same time, sables had the strong selection to the log’s density and the crown’s cover-degree. Generally it avoided high elevation and lower slope land.展开更多
To understand the quantitative dynamics and death reason of stimulating regeneration seedlings is significant for stimulating the natural regeneration ofLarix gmelinii and implement of conservation project of natural ...To understand the quantitative dynamics and death reason of stimulating regeneration seedlings is significant for stimulating the natural regeneration ofLarix gmelinii and implement of conservation project of natural forest. This paper summarized location observations and directly-seeding simulation experiments of six permanent sample plots that were set up after the seed bumper harvest year ofLarix gmelinii in 1989. The study showed that stimulating natural regeneration seedlings had a large mortality in the first three years, especially in the first year of seedling emergence. After three years seedlings died less and stepped into the stable regeneration stage. A large number of seedlings died of sunscald as the primary death reason. For those areas of good site conditions and rich soil, damping-off would cause seedlings to death in large quantities. The task of stimulating regeneration is mainly to get rid of the litter (forest floor) on burned areas. By means of promoting measures, emergence rate of sown seeds would be several times and dozens of times higher than that of seed shedding on the condition of retention of forest floor. Promoting the regeneration need to select the suitable site against great slope and low-lying lands; at the same time, be careful of the avoidance of frost heaving by depression water.展开更多
Six new chrysophycean stomatocysts ornamented with reticulum were illustrated based on SEM observation. They were described following the guidelines of the International Statospore Working Group (ISWG). All samples we...Six new chrysophycean stomatocysts ornamented with reticulum were illustrated based on SEM observation. They were described following the guidelines of the International Statospore Working Group (ISWG). All samples were collected from the Great Xing'an Mountains, China. Their taxonomic characteristics and habitats were described to provide new information on the biodiversity of chrysophycean stomatocysts. As is common with many morphotypes, their biological affinities remain unknown.展开更多
Boreal peatlands represent a large global carbon pool. The relationships between carbon mineralization, soil temperature and moisture in the permafrost peatlands of the Great Hing'an Mountains, China, were examined. ...Boreal peatlands represent a large global carbon pool. The relationships between carbon mineralization, soil temperature and moisture in the permafrost peatlands of the Great Hing'an Mountains, China, were examined. The CO2 emissions were measured during laboratory incubations of samples from four sites under different temperatures (5, 10, 15, and 20℃) and moisture contents (0%, 30%, 60%, 100% water holding capacity (WHC) and completely water saturated). Total carbon mineralization ranged from 15.51 to 112.92 mg C under the treatments for all sites. Carbon mineralization rates decreased with soil depth, increased with temperature, and reached the highest at 60% WHC at the same temperature. The calculated temperature coefficient (Q10) values ranged from 1.84 to 2.51 with the soil depths and moisture. However, the values were not significantly affected by soil moisture and depth for all sites due to the different peat properties (P 〉 0.05). We found that the carbon mineralization could be successfully predicted as a two-compartment function with temperature and moisture (R^2 〉 0.96) and total carbon mineralization was significantly affected by temperature and moisture (P 〈 0.05). Thus, temperature and moisture would play important roles in carbon mineralization of permafrost peatlands in the Great Hing'an Mountains, indicating that the permafrost peatlands would be sensitive to the environment change, and the permafrost peatlands would be potentially mineralized under future climate change.展开更多
The Xiaoxing’an Mountains,located in the temperate monsoon climate zone in Northeast China,have the largest and most complete virgin Korean pine forest in Asia,which has great potential for carbon sequestration.Based...The Xiaoxing’an Mountains,located in the temperate monsoon climate zone in Northeast China,have the largest and most complete virgin Korean pine forest in Asia,which has great potential for carbon sequestration.Based on the observational data of the eddy-covariance system at Wuying National Climate Observatory in January 2015–November 2017,the CO_(2)flux in the forest ecosystem around the observatory was quantitatively studied and the distribution characteristics of the flux source area were analyzed by the Kljun model and the Agroscope Reckenholz–Tänikon footprint tool,providing references for assessing the carbon source/sink potential of the unique forest area.The results showed that the annual total carbon flux around the observatory in 2015,2016,and 2017 was−756.84,−834.73,and−629.37 gC m−2,respectively,higher than that of other forest ecosystems.The forest of the study area in the Xiaoxing’an Mountains was a strong carbon sink,with the strongest carbon fixation capacity in June and weakest in October,and the carbon flux of each month was less than zero.The flux source area under stable atmospheric conditions was larger than that under unstable conditions,and the source area was larger in the nongrowing season than in the growing season.The size of the source area was largest in winter,followed by spring,autumn,and summer.The maximum length of the source area was 1614.12 m(5639.33 m)under unstable(stable)conditions when the flux contribution rate was 90%.The peak flux contribution was located near the sensor(i.e.,within 200 m)in all seasons.The contribution of the source area from the coniferous and broadleaved mixed forest on the west side of the observatory was greater than(3.4 times)that from the Korean pine forest on the east side.展开更多
Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to ...Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to investigate the primary weather conditions that might influence forest defoliation and to identify the most important life stage of the larch caterpillar at which forest defoliation might be mitigated by incorporating more inhibitory influences from climatic factors.The life cycle of the larch caterpillar was partitioned into four stages and multiple linear regression and mixed effect models were combined with a relative weight analysis approach to evaluate the importance and influence of meteorological variables on defoliation dynamics.The results show that warmer temperatures in growing seasons and overwintering periods can increase the defoliation area,while rainy and humid growing seasons decrease the defoliation area.Total precipitation during the early instar larval period had the greatest power to explain the variance in defoliation dynamics and had a very strong inhibitory effect,followed by the accumulative temperatures of the late instar larval period which had a positive impact,and precipitation during the middle instar larval period which had a negative impact.Weather conditions during the early instar larval period had the greatest influence on the area defoliated and accounted for 40%of the explained variance.This study demonstrates that climatic warming and drying will increase the risk of larch caterpillar outbreaks in the Great Xing’an Mountains.展开更多
Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measu...Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measured related environmental variables along a toposequence within three successional stages, initial (3 years post-fire), early (13 years post-fire) and late (〉1oo years post-fire) successional stages. Using permutation multivariate ANOVA and nonmetric multidimensional scaling, we analyzed how understory species richness and composition change as time-since-fire proceeds, and their correlative relationships with environmental variables. Species richness and composition showed significant differences among the three successional stages. Understory species richness and abundance were significantly associated with time-since-fire, topographic position, elevation and organic layer depth. Among these variables, time-since-fire had the strongest effect and topographic position was the second major factor on affecting understorycommunity assembly. In overwhelmed the effects addition, time-since-fire of soil pH in the initial successional stage and gravimetric soil moisture in early and late successional stages on understory species composition展开更多
By the contingent value method, we studied the non-use value of wetland ecosystem service of Hongxing National Nature Reserve (HNNR) in Heilongjiang Pro- vince, northeast China. The proportion of respondents willing...By the contingent value method, we studied the non-use value of wetland ecosystem service of Hongxing National Nature Reserve (HNNR) in Heilongjiang Pro- vince, northeast China. The proportion of respondents willing to pay (WTP) for protection of HNNR was 63 %. The WTP ratio was affected by geographical area, contact nature, personal preferences, and familiar degree of the respondents. The WTP value was affected by age, education level and career of the respondents. The mainly reasons for people rejecting to pay for protecting HNNR were "I am not familiar to HNNR" and "I had no capacity for additional spending because of low income". Weighted average individual WTP value was CNY 59.26 Yuan ind.^-1 year^-1 for all the respondents with WTP. The total non-use ecosystem service value of HNNR was CNY 1430 million Yuan in 2013. The heritage value was highest followed by existence value and option value. From the high ecosystem service value in HNNR, it is very important to construct nature reserve for protecting natural ecosystems and human sustainable use of natural resources.展开更多
Underground fires are a smoldering combustion with a slow spread rate, low temperatures and no flame. They can last from days to several months, and can even become overwintering fires. They are difficult to find, lea...Underground fires are a smoldering combustion with a slow spread rate, low temperatures and no flame. They can last from days to several months, and can even become overwintering fires. They are difficult to find, leading to considerable damage to the forests. The moisture content of combustible fuels is an important factor in the occurrence and persistence of underground forest fires. The Daxing’an Mountains are a hot spot for underground fires in China. This paper looks at the influence of different moisture contents on underground fire characteristics using simulation combustion experiments in the laboratory. The study showed that peak temperature and spread rate fluctuation of humus at different moisture levels increased with humus depth. Peak temperature and spread rate fluctuation of humus at different depths decreased with increased moisture;moisture content and depth of humus had a significant effect on peak temperature and spread rate fluctuation;peak temperature at different depths decreased with increased moisture;the spread rate in upper layers increased with moisture content, while the spread rate in the lower layers decreased with increased moisture content.展开更多
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
文摘This paper studies the habitat selection of sables (Martes. zibellina) in spring adopting radio-tracking and GPS (Global Positioning System) in Daxing’an Mountains of China. Sables liked mature and elder forest, but it avoided uncovered and young growth land. In spring sables had strong selection to medium cover-degree forest, but it avoided widen ground and especial high cover-degree forest. On the contrary sables didn’t have the strong selection to shrubs cover-degree, but strong selection to dominant tree species, slope degree and slope direction, especially sable liked medium and lower slope. At the same time, sables had the strong selection to the log’s density and the crown’s cover-degree. Generally it avoided high elevation and lower slope land.
文摘To understand the quantitative dynamics and death reason of stimulating regeneration seedlings is significant for stimulating the natural regeneration ofLarix gmelinii and implement of conservation project of natural forest. This paper summarized location observations and directly-seeding simulation experiments of six permanent sample plots that were set up after the seed bumper harvest year ofLarix gmelinii in 1989. The study showed that stimulating natural regeneration seedlings had a large mortality in the first three years, especially in the first year of seedling emergence. After three years seedlings died less and stepped into the stable regeneration stage. A large number of seedlings died of sunscald as the primary death reason. For those areas of good site conditions and rich soil, damping-off would cause seedlings to death in large quantities. The task of stimulating regeneration is mainly to get rid of the litter (forest floor) on burned areas. By means of promoting measures, emergence rate of sown seeds would be several times and dozens of times higher than that of seed shedding on the condition of retention of forest floor. Promoting the regeneration need to select the suitable site against great slope and low-lying lands; at the same time, be careful of the avoidance of frost heaving by depression water.
基金Supported by the National Natural Science Foundation of China (Nos.31070181, 30870162)the Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. J50401)
文摘Six new chrysophycean stomatocysts ornamented with reticulum were illustrated based on SEM observation. They were described following the guidelines of the International Statospore Working Group (ISWG). All samples were collected from the Great Xing'an Mountains, China. Their taxonomic characteristics and habitats were described to provide new information on the biodiversity of chrysophycean stomatocysts. As is common with many morphotypes, their biological affinities remain unknown.
基金supported by the National Natural Science Foundation of China (No. 40671013,40871245)
文摘Boreal peatlands represent a large global carbon pool. The relationships between carbon mineralization, soil temperature and moisture in the permafrost peatlands of the Great Hing'an Mountains, China, were examined. The CO2 emissions were measured during laboratory incubations of samples from four sites under different temperatures (5, 10, 15, and 20℃) and moisture contents (0%, 30%, 60%, 100% water holding capacity (WHC) and completely water saturated). Total carbon mineralization ranged from 15.51 to 112.92 mg C under the treatments for all sites. Carbon mineralization rates decreased with soil depth, increased with temperature, and reached the highest at 60% WHC at the same temperature. The calculated temperature coefficient (Q10) values ranged from 1.84 to 2.51 with the soil depths and moisture. However, the values were not significantly affected by soil moisture and depth for all sites due to the different peat properties (P 〉 0.05). We found that the carbon mineralization could be successfully predicted as a two-compartment function with temperature and moisture (R^2 〉 0.96) and total carbon mineralization was significantly affected by temperature and moisture (P 〈 0.05). Thus, temperature and moisture would play important roles in carbon mineralization of permafrost peatlands in the Great Hing'an Mountains, indicating that the permafrost peatlands would be sensitive to the environment change, and the permafrost peatlands would be potentially mineralized under future climate change.
基金Supported by the National Science and Technology Basic Resources Survey Program of China(2019FY101300)National Natural Science Foundation of China(42141016).
文摘The Xiaoxing’an Mountains,located in the temperate monsoon climate zone in Northeast China,have the largest and most complete virgin Korean pine forest in Asia,which has great potential for carbon sequestration.Based on the observational data of the eddy-covariance system at Wuying National Climate Observatory in January 2015–November 2017,the CO_(2)flux in the forest ecosystem around the observatory was quantitatively studied and the distribution characteristics of the flux source area were analyzed by the Kljun model and the Agroscope Reckenholz–Tänikon footprint tool,providing references for assessing the carbon source/sink potential of the unique forest area.The results showed that the annual total carbon flux around the observatory in 2015,2016,and 2017 was−756.84,−834.73,and−629.37 gC m−2,respectively,higher than that of other forest ecosystems.The forest of the study area in the Xiaoxing’an Mountains was a strong carbon sink,with the strongest carbon fixation capacity in June and weakest in October,and the carbon flux of each month was less than zero.The flux source area under stable atmospheric conditions was larger than that under unstable conditions,and the source area was larger in the nongrowing season than in the growing season.The size of the source area was largest in winter,followed by spring,autumn,and summer.The maximum length of the source area was 1614.12 m(5639.33 m)under unstable(stable)conditions when the flux contribution rate was 90%.The peak flux contribution was located near the sensor(i.e.,within 200 m)in all seasons.The contribution of the source area from the coniferous and broadleaved mixed forest on the west side of the observatory was greater than(3.4 times)that from the Korean pine forest on the east side.
基金The work was supported by the National Key R&D Program of China(2017YFA0604403).
文摘Larch caterpillars are widely distributed in the Great Xing’an boreal forests;however,the relationship between caterpillar defoliation dynamics and climatic factors is poorly understood.The aims of this study are to investigate the primary weather conditions that might influence forest defoliation and to identify the most important life stage of the larch caterpillar at which forest defoliation might be mitigated by incorporating more inhibitory influences from climatic factors.The life cycle of the larch caterpillar was partitioned into four stages and multiple linear regression and mixed effect models were combined with a relative weight analysis approach to evaluate the importance and influence of meteorological variables on defoliation dynamics.The results show that warmer temperatures in growing seasons and overwintering periods can increase the defoliation area,while rainy and humid growing seasons decrease the defoliation area.Total precipitation during the early instar larval period had the greatest power to explain the variance in defoliation dynamics and had a very strong inhibitory effect,followed by the accumulative temperatures of the late instar larval period which had a positive impact,and precipitation during the middle instar larval period which had a negative impact.Weather conditions during the early instar larval period had the greatest influence on the area defoliated and accounted for 40%of the explained variance.This study demonstrates that climatic warming and drying will increase the risk of larch caterpillar outbreaks in the Great Xing’an Mountains.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31270511, 41501200)
文摘Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measured related environmental variables along a toposequence within three successional stages, initial (3 years post-fire), early (13 years post-fire) and late (〉1oo years post-fire) successional stages. Using permutation multivariate ANOVA and nonmetric multidimensional scaling, we analyzed how understory species richness and composition change as time-since-fire proceeds, and their correlative relationships with environmental variables. Species richness and composition showed significant differences among the three successional stages. Understory species richness and abundance were significantly associated with time-since-fire, topographic position, elevation and organic layer depth. Among these variables, time-since-fire had the strongest effect and topographic position was the second major factor on affecting understorycommunity assembly. In overwhelmed the effects addition, time-since-fire of soil pH in the initial successional stage and gravimetric soil moisture in early and late successional stages on understory species composition
基金supported by the Fundamental Research Funds for the Central Universities(DL13BAX10)the Natural Science Foundation of Heilongjiang Province of China(QC2013C037)the assisted project by Heilongjiang Postdoctoral Funds for Scientific Research Initiation(LBH-Q13006)
文摘By the contingent value method, we studied the non-use value of wetland ecosystem service of Hongxing National Nature Reserve (HNNR) in Heilongjiang Pro- vince, northeast China. The proportion of respondents willing to pay (WTP) for protection of HNNR was 63 %. The WTP ratio was affected by geographical area, contact nature, personal preferences, and familiar degree of the respondents. The WTP value was affected by age, education level and career of the respondents. The mainly reasons for people rejecting to pay for protecting HNNR were "I am not familiar to HNNR" and "I had no capacity for additional spending because of low income". Weighted average individual WTP value was CNY 59.26 Yuan ind.^-1 year^-1 for all the respondents with WTP. The total non-use ecosystem service value of HNNR was CNY 1430 million Yuan in 2013. The heritage value was highest followed by existence value and option value. From the high ecosystem service value in HNNR, it is very important to construct nature reserve for protecting natural ecosystems and human sustainable use of natural resources.
基金financially supported by the National Natural Science Foundation of China (31971669)the Postgraduate Innovation Project of Beihua University (2021-013)
文摘Underground fires are a smoldering combustion with a slow spread rate, low temperatures and no flame. They can last from days to several months, and can even become overwintering fires. They are difficult to find, leading to considerable damage to the forests. The moisture content of combustible fuels is an important factor in the occurrence and persistence of underground forest fires. The Daxing’an Mountains are a hot spot for underground fires in China. This paper looks at the influence of different moisture contents on underground fire characteristics using simulation combustion experiments in the laboratory. The study showed that peak temperature and spread rate fluctuation of humus at different moisture levels increased with humus depth. Peak temperature and spread rate fluctuation of humus at different depths decreased with increased moisture;moisture content and depth of humus had a significant effect on peak temperature and spread rate fluctuation;peak temperature at different depths decreased with increased moisture;the spread rate in upper layers increased with moisture content, while the spread rate in the lower layers decreased with increased moisture content.