期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Relation between anthropometric variations and resting energy expenditure,VO_(2) max and anaerobic capacity of young,healthy individuals-an update
1
作者 Savarna Kumari Madhusudan Tiwari 《TMR Non-Drug Therapy》 2023年第1期40-46,共7页
Anthropometric variations can affect resting energy expenditure,VO_(2) max and anaerobic capacity of young,healthy individuals.Studies have shown that body fat percentage,weight,and height can all affect the three mea... Anthropometric variations can affect resting energy expenditure,VO_(2) max and anaerobic capacity of young,healthy individuals.Studies have shown that body fat percentage,weight,and height can all affect the three measures.The study aimed to study VO_(2) max and 24-hour thermogenesis measures in predominantly sedentary individuals and weight changes afterwards.VO_(2) max-associated research shows that taller individuals tend to have higher VO_(2) max levels compared to shorter individuals.This could be because taller individuals have a larger lung capacity and greater oxygen delivery to the muscles.Weight can also affect VO_(2) max,as heavier individuals tend to have higher VO_(2) max levels than lighter individuals.Weight is also associated with resting energy expenditure,as heavier individuals tend to have a higher resting energy expenditure than lighter individuals.The purpose of this study was to conduct a systematic review of the existing literature related to resting energy expenditure and metabolic effects of VO_(2) max,and anaerobic capacity in sedentary active adults of anthropometric variations.Several studies have recently examined the possibility of improving aerobic and metabolic functions ensuring cardiorespiratory fitness within the population of anthropometric variations.Everyday physical activity and heredity ability influenced mainly the gold standard measuring tool for cardiorespiratory fitness,VO_(2) max,predicting mortality and morbidity.Weight gain has also been shown to be associated with lower cardiorespiratory fitness,regardless of physical activity levels.The VO_(2) max may have a different effect on energy balance apart from physical activity’s energy expenditure(EE),possibly by affecting the resting metabolic rate(RMR)or triggering a common mechanism associated with diet-induced thermogenesis.Weight change is predicted by sedentary energy expenditure,but directly measured VO_(2) max does not appear to be correlated with weight change.The relationship between resting energy expenditure,VO_(2) max,and anaerobic capacity in individuals is complex.Resting energy expenditure is directly related to anaerobic capacity,as it is an indicator of the body’s ability to work anaerobically.VO_(2) max is also related to anaerobic capacity,as it reflects the body’s maximal aerobic power.However,the strength of this relationship is not known.Overall,both resting energy expenditure and VO_(2) max are important determinants of anaerobic capacity in individuals and are worth considering when evaluating an individual’s anaerobic potential. 展开更多
关键词 BMI body mass index VO_(2)max anaerobic capacity
下载PDF
Oxygen tolerance capacity of upflow anaerobic solid-state(UASS) with anaerobic filter(AF) system 被引量:2
2
作者 Yao Meng Carsten Jost +2 位作者 Jan Mumme Kaijun Wang Bernd Linke 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期200-206,共7页
In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state(UASS)with anaerobic filter(AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was inves... In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state(UASS)with anaerobic filter(AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0–431 m L O2/gvswere conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431 m L O2/gvsincreased the methane yield by 82.2%. Aeration intensities of 0–355 m L O2/gvswere conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen(DO) of UASS and AF reactors kept around 1.39 ±0.27 and 0.99 ± 0.38 mg/L, respectively. p H was relatively stable around 7.11 ± 0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85 ± 7 m L/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. 展开更多
关键词 anaerobic digestion Oxygen tolerance capacity UASS Maize straw Microaeration Solid-state
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部