In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate...In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent.展开更多
In order to improve the anaerobic digestion efficiency of waste activated sludge(WAS),a pretreatment procedure should be carried out so as to disrupt the microbial cell structure,thus releasing intracellular organic...In order to improve the anaerobic digestion efficiency of waste activated sludge(WAS),a pretreatment procedure should be carried out so as to disrupt the microbial cell structure,thus releasing intracellular organic matters.In this paper,a corona discharge triggered by a DC voltage was employed to pre-treat WAS for various time periods under different temperatures.The magnitude of the DC voltage was 4 k V at both negative and positive polarities.The changes in the soluble chemical oxygen demand,phosphorus and nitrogen content,and p H value within the WAS were utilized to estimate the pretreatment performance of the DC corona.It was found that with increasing treatment time,the pretreatment efficiency tends to be reduced.With increased temperature,the pretreatment efficiency appears to be better.It is suggested that the oxidative species and the active particles generated in the corona discharge play an important role in disrupting the microbial cell structure,which is dependent upon the treatment time and the temperature.展开更多
The changes in the physical characteristics of unconditioned and conditioned anaerobic digested sludge (ADS) biosolids, such as capillary suction time (CST), yield stress, average size and fractal dimensions, were...The changes in the physical characteristics of unconditioned and conditioned anaerobic digested sludge (ADS) biosolids, such as capillary suction time (CST), yield stress, average size and fractal dimensions, were investigated through a CST test, transient and dynamic rheological test and image analysis. The results showed that the optimum polymer dose range was observed when CST or its reciprocal value was employed as an indicator. There were good correlations between the yield stresses determined from both a controlled shear stress test and a strain amplitude sweep test. The yield stress and storage modulus (G') increased as the polymer dose increased in most cases. A frequency sweep test revealed that polymer conditioning could extend the frequency sweep ranges for their elastic behaviors over viscous behaviors as well as the gel-like structure in the linear viscoelastic range. These results implied that more deformation energy was stored in this rigid structure, and that elastic behavior became increasingly dominant with the addition of the polymer in most cases, In addition, both the average sizes and two-dimensional fractal dimensions for conditioned ADS biosolids presented a similar up-climax-down variation trend as the polymer doses increased, whereas the critical polymer doses at the highest average sizes or two-dimensional fractal dimensions, were different. Correlation analysis revealed that the conditioned ADS dewaterability was not correlated with the yield stresses, while the average sizes or the two-dimensional fractal dimensions for conditioned ADS biosolids could be taken as the indication parameters for ADS dewaterability.展开更多
The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The tot...The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the ceutrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (〈 40℃), the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.展开更多
This study compared effects of three different valent iron(Fe^(0),Fe(II)and Fe(III))on enhanced anaerobic sludge digestion,focusing on the changes of oxidation reduction potential(ORP),dissolved organic nitrogen(DON),...This study compared effects of three different valent iron(Fe^(0),Fe(II)and Fe(III))on enhanced anaerobic sludge digestion,focusing on the changes of oxidation reduction potential(ORP),dissolved organic nitrogen(DON),and microbial community.Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days(d),the maximum methane production rate of sludge samples dosed with respective Fe^(0),Fe(II)and Fe(III)at the same concentration showed indiscernible differences at each iron dose,regardless of the different iron valence.Moreover,their behavior in changes of ORP,DON and microbial community was different:(1)the addition of Fe^(0) made the ORP of sludge more negative,and the addition of Fe(II)and Fe(III)made the ORP of sludge less negative.However,whether being more or less negative,the changes of ORP may show unobservable effects on methane yield when it ranged from−278.71 to−379.80 mV;(2)the degradation of dissolved organic nitrogen,particularly proteins,was less efficient in sludge samples dosed with Fe^(0) compared with those dosed with Fe(II)and Fe(III)after an incubation period of 30 d.At the same dose of 160 mg/L iron,more cysteine was noted in sludge samples dosed with Fe(II)(30.74 mg/L)and Fe(III)(27.92 mg/L)compared with that dosed with Fe^(0)(21.75 mg/L);(3)Fe^(0) particularly promoted the enrichment of Geobacter,and it was 6 times higher than those in sludge samples dosed with Fe(II)and Fe(III)at the same dose of 160 mg/L iron.展开更多
The reversibility of the structure and dewaterability of broken anaerobic digested sludge(ADS)is important to ensure the efficiency of sludge treatment or management processes.This study investigated the effect of c...The reversibility of the structure and dewaterability of broken anaerobic digested sludge(ADS)is important to ensure the efficiency of sludge treatment or management processes.This study investigated the effect of continuous strong shear(CSS)and multipulse shear(MPS)on the zeta potential,size(median size,d(50)),mass fractal dimension(DF),and capillary suction time(CST)of ADS aggregates.Moreover,the self-regrowth(SR)of broken ADS aggregates during slow mixing was also analyzed.The results show that raw ADS with d(50) of 56.5μm was insensitive to CSS–SR or MPS–SR,though the size slightly decreased after the breakage phase.For conditioned ADS with d(50) larger than 600μm,the breakage in small-scale surface erosion changed to large-scale fragmentation as the CSS strength increased.In most cases,after CSS or MPS,the broken ADS had a relatively more compact structure than before and d(50) is at least 200μm.The CST of the broken fragments from optimally dosed ADS increased,whereas that corresponding to overdosed ADS decreased.MPS treatment resulted in larger and more compact broken ADS fragments with a lower CST value than CSS.During the subsequent slow mixing,the broken ADS aggregates did not recover their charge,size,and dewaterability to the initial values before breakage.In addition,less than 15%self-regrowth in terms of percentage of the regrowth factor was observed in broken ADS after CSS at average velocity gradient no less than 1905.6 sec^(-1).展开更多
2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher...2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher organic reduction and methane production than the conventional single-stage AD(also operated at 12 days HRT). 454 pyrosequencing was performed to determine and compare the microbial communities. The acidogenic reactor of the 2-phase system yielded a unique bacterial community of the lowest richness and diversity, while bacterial profiles of the methanogenic reactor closely followed the single-stage reactor. All reactors were predominated by hydrogenotrophic methanogens, mainly Methanolinea. Unusually, the acidogenic reactor contributed up to 24%of total methane production in the 2-phase system. This could be explained by the presence of Methanosarcina and Methanobrevibacter, and their activities could also help regulate reactor alkalinity during high loading conditions through carbon dioxide production. The enrichment of hydrolytic and acidogenic Porphyromonadaceae, Prevotellaceae, Ruminococcaceae and unclassified Bacteroidetes in the acidogenic reactor would have contributed to the improved sludge volatile solids degradation, and ultimately the overall 2-phase system's performance. Syntrophic acetogenic microorganisms were absent in the acidogenic reactor but present in the downstream methanogenic reactor, indicating the retention of various metabolic pathways also found in a single-stage system. The determination of key microorganisms further expands our understanding of the complex biological functions in AD process.展开更多
This study compared the three wastewater pretreatments of ozonation,Fe2þ-S2O82and freeze-thawing(F/T)in the disintegration,anaerobic digestion(AD)and final disposal of the sludge.The F/T pretreatment increased t...This study compared the three wastewater pretreatments of ozonation,Fe2þ-S2O82and freeze-thawing(F/T)in the disintegration,anaerobic digestion(AD)and final disposal of the sludge.The F/T pretreatment increased the dewaterability and settleability of the sludge by 7.8%and 47.1%,respectively.The ozonation pretreatment formed more volatile fatty acids(VFAs),with a peak value of 320.82 mg SCOD/L and controlled the release of sulfides.The Fe2þ-S2O82pretreatment removed heavy metals through the absorption and flocculation of ferric particles formed in-situ.During the anaerobic digestion of the sludge,the ozonation pretreatment accelerated the hydrolysis rate(k)rather than the biochemical methane potential(B0)of the sludge due to the high VFA content in the supernatant.Comparatively,the F/T pretreatment facilitated the B0 with great economic efficiency by enhancing the solubilisation of the sludge.Although Fe2þ-S2O82pretreatment decreased the methane production,the ferric particle was a unique advantage in the disintegration and harmless disposal of the sludge.The digested sludge had more VFAs after ozonation pretreatment,which contributed to the recycling of carbon.In addition,the lower sludge volume could save the expense of transportation and disposal by ozonation pretreatment.Different pretreatments had different characteristics.The comparative study provided information allowing the selection of the type of pretreatment to achieve different objectives of the treatment and disposal of sludge.展开更多
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most...Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most of the ROX is excreted into the manure, causing arsenic contamination in wastewater. The arsenic compounds are toxic to microorganisms, but the influence of continuous ROX loading on upflow anaerobic sludge blanket (UASB) reactor is still unknown. In this study, the impact of ROX and its degradation products on the performance of the UASB reactor and the degradation and speciation of ROX in the reactor were investigated. The UASB reactor (hydraulic retention time: 1.75 d) was operated using synthetic wastewater supplemented with ROX for a period of 260 days. With continuous ROX addition at 25.0 mg.L-1, severe inhibition to methanogenic activity occurred after 87 days operation accompanied with an accumulation of volatile fatty acids (VFAs) and a decline in pH. The decrease of added ROX concentration to 13.2 mg.L-1 did not mediate the inhibition. As(III), As (V), MMA(V), DMA(V), HAPA and an unknown arsenic compound were detected in the reactor, and a possible biotransformation pathway of ROX was proposed. Mass balance analysis of arsenic indicated that 60%-70% of the arsenic was discharged into the effluent, and 30%-40% was precipitated in the reactor. The results from this study suggest that we need to pay attention to the stability in the UASB reactors treating organoarsenic-contaminated manure and wastewater, and the effluent and sludge from the reactor tO avoid diffusion of arsenic contamination.展开更多
基金Sponsored by the National High Technology Research Development Plan of China (Grant No.2007AA06A411)
文摘In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent.
基金financially supported by National Natural Science Foundation of China(Grant No.51677127)
文摘In order to improve the anaerobic digestion efficiency of waste activated sludge(WAS),a pretreatment procedure should be carried out so as to disrupt the microbial cell structure,thus releasing intracellular organic matters.In this paper,a corona discharge triggered by a DC voltage was employed to pre-treat WAS for various time periods under different temperatures.The magnitude of the DC voltage was 4 k V at both negative and positive polarities.The changes in the soluble chemical oxygen demand,phosphorus and nitrogen content,and p H value within the WAS were utilized to estimate the pretreatment performance of the DC corona.It was found that with increasing treatment time,the pretreatment efficiency tends to be reduced.With increased temperature,the pretreatment efficiency appears to be better.It is suggested that the oxidative species and the active particles generated in the corona discharge play an important role in disrupting the microbial cell structure,which is dependent upon the treatment time and the temperature.
基金supported by the National Natural Science Foundation of China (No. 51078035, 20977008)the Fundamental Research Funds for the Central Universities (No. BLJC200902, TD2010-5)+1 种基金the High-Tech Research and Development Program (863) of China (No. 2007AA06Z301)the Major Projects on Control and Rectification of Water Body Pollution (No. 2008ZX07422-002-004, 2008ZX07314-006)
文摘The changes in the physical characteristics of unconditioned and conditioned anaerobic digested sludge (ADS) biosolids, such as capillary suction time (CST), yield stress, average size and fractal dimensions, were investigated through a CST test, transient and dynamic rheological test and image analysis. The results showed that the optimum polymer dose range was observed when CST or its reciprocal value was employed as an indicator. There were good correlations between the yield stresses determined from both a controlled shear stress test and a strain amplitude sweep test. The yield stress and storage modulus (G') increased as the polymer dose increased in most cases. A frequency sweep test revealed that polymer conditioning could extend the frequency sweep ranges for their elastic behaviors over viscous behaviors as well as the gel-like structure in the linear viscoelastic range. These results implied that more deformation energy was stored in this rigid structure, and that elastic behavior became increasingly dominant with the addition of the polymer in most cases, In addition, both the average sizes and two-dimensional fractal dimensions for conditioned ADS biosolids presented a similar up-climax-down variation trend as the polymer doses increased, whereas the critical polymer doses at the highest average sizes or two-dimensional fractal dimensions, were different. Correlation analysis revealed that the conditioned ADS dewaterability was not correlated with the yield stresses, while the average sizes or the two-dimensional fractal dimensions for conditioned ADS biosolids could be taken as the indication parameters for ADS dewaterability.
基金supported by the Fundamental Research Funds for the Central University (No.JC2011-1,TD2010-5)the National Natural Science Foundation of China(No. 51078035, 21177010)the Ph.D Programs Foundation of the Ministry of Education of China (No.20100014110004)
文摘The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the ceutrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (〈 40℃), the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.
基金funded by the National Natural Science Foundation of China(Grant Nos.52170133,U1901216,51708239)the Natural Science Foundation of Hubei Province(No.2020CFA042)Applied Basic Research Program of Wuhan(No.2020020601012277),and Program for HUST Academic Frontier Youth Team.
文摘This study compared effects of three different valent iron(Fe^(0),Fe(II)and Fe(III))on enhanced anaerobic sludge digestion,focusing on the changes of oxidation reduction potential(ORP),dissolved organic nitrogen(DON),and microbial community.Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days(d),the maximum methane production rate of sludge samples dosed with respective Fe^(0),Fe(II)and Fe(III)at the same concentration showed indiscernible differences at each iron dose,regardless of the different iron valence.Moreover,their behavior in changes of ORP,DON and microbial community was different:(1)the addition of Fe^(0) made the ORP of sludge more negative,and the addition of Fe(II)and Fe(III)made the ORP of sludge less negative.However,whether being more or less negative,the changes of ORP may show unobservable effects on methane yield when it ranged from−278.71 to−379.80 mV;(2)the degradation of dissolved organic nitrogen,particularly proteins,was less efficient in sludge samples dosed with Fe^(0) compared with those dosed with Fe(II)and Fe(III)after an incubation period of 30 d.At the same dose of 160 mg/L iron,more cysteine was noted in sludge samples dosed with Fe(II)(30.74 mg/L)and Fe(III)(27.92 mg/L)compared with that dosed with Fe^(0)(21.75 mg/L);(3)Fe^(0) particularly promoted the enrichment of Geobacter,and it was 6 times higher than those in sludge samples dosed with Fe(II)and Fe(III)at the same dose of 160 mg/L iron.
基金supported by the Fundamental Research Funds for the Central UniversitiesChina(No.YX2013-20)+1 种基金the National Natural Science Foundation of China(Nos.51478041,51078035,and 21177010)the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Personnel of China,and the Major Projects on Control and Rectification of Water Body Pollution(Nos.2012ZX07105-002-03 and 2013ZX07202-010)
文摘The reversibility of the structure and dewaterability of broken anaerobic digested sludge(ADS)is important to ensure the efficiency of sludge treatment or management processes.This study investigated the effect of continuous strong shear(CSS)and multipulse shear(MPS)on the zeta potential,size(median size,d(50)),mass fractal dimension(DF),and capillary suction time(CST)of ADS aggregates.Moreover,the self-regrowth(SR)of broken ADS aggregates during slow mixing was also analyzed.The results show that raw ADS with d(50) of 56.5μm was insensitive to CSS–SR or MPS–SR,though the size slightly decreased after the breakage phase.For conditioned ADS with d(50) larger than 600μm,the breakage in small-scale surface erosion changed to large-scale fragmentation as the CSS strength increased.In most cases,after CSS or MPS,the broken ADS had a relatively more compact structure than before and d(50) is at least 200μm.The CST of the broken fragments from optimally dosed ADS increased,whereas that corresponding to overdosed ADS decreased.MPS treatment resulted in larger and more compact broken ADS fragments with a lower CST value than CSS.During the subsequent slow mixing,the broken ADS aggregates did not recover their charge,size,and dewaterability to the initial values before breakage.In addition,less than 15%self-regrowth in terms of percentage of the regrowth factor was observed in broken ADS after CSS at average velocity gradient no less than 1905.6 sec^(-1).
基金supported with funding from the National Research Foundation(NRF-CRP5-2009-02),Singapore for the project"Wastewater Treatment Plants as Urban Eco Power Stations"
文摘2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher organic reduction and methane production than the conventional single-stage AD(also operated at 12 days HRT). 454 pyrosequencing was performed to determine and compare the microbial communities. The acidogenic reactor of the 2-phase system yielded a unique bacterial community of the lowest richness and diversity, while bacterial profiles of the methanogenic reactor closely followed the single-stage reactor. All reactors were predominated by hydrogenotrophic methanogens, mainly Methanolinea. Unusually, the acidogenic reactor contributed up to 24%of total methane production in the 2-phase system. This could be explained by the presence of Methanosarcina and Methanobrevibacter, and their activities could also help regulate reactor alkalinity during high loading conditions through carbon dioxide production. The enrichment of hydrolytic and acidogenic Porphyromonadaceae, Prevotellaceae, Ruminococcaceae and unclassified Bacteroidetes in the acidogenic reactor would have contributed to the improved sludge volatile solids degradation, and ultimately the overall 2-phase system's performance. Syntrophic acetogenic microorganisms were absent in the acidogenic reactor but present in the downstream methanogenic reactor, indicating the retention of various metabolic pathways also found in a single-stage system. The determination of key microorganisms further expands our understanding of the complex biological functions in AD process.
基金This study was supported by the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2019TS04).
文摘This study compared the three wastewater pretreatments of ozonation,Fe2þ-S2O82and freeze-thawing(F/T)in the disintegration,anaerobic digestion(AD)and final disposal of the sludge.The F/T pretreatment increased the dewaterability and settleability of the sludge by 7.8%and 47.1%,respectively.The ozonation pretreatment formed more volatile fatty acids(VFAs),with a peak value of 320.82 mg SCOD/L and controlled the release of sulfides.The Fe2þ-S2O82pretreatment removed heavy metals through the absorption and flocculation of ferric particles formed in-situ.During the anaerobic digestion of the sludge,the ozonation pretreatment accelerated the hydrolysis rate(k)rather than the biochemical methane potential(B0)of the sludge due to the high VFA content in the supernatant.Comparatively,the F/T pretreatment facilitated the B0 with great economic efficiency by enhancing the solubilisation of the sludge.Although Fe2þ-S2O82pretreatment decreased the methane production,the ferric particle was a unique advantage in the disintegration and harmless disposal of the sludge.The digested sludge had more VFAs after ozonation pretreatment,which contributed to the recycling of carbon.In addition,the lower sludge volume could save the expense of transportation and disposal by ozonation pretreatment.Different pretreatments had different characteristics.The comparative study provided information allowing the selection of the type of pretreatment to achieve different objectives of the treatment and disposal of sludge.
基金Acknowledgements This research was partially supported by the National Science Foundation of China (Grant Nos.51578205 and 51538012), the Fundamental Research Funds for the Central Universities (No. JZ2016HGTB0722), and the Program for Cultivating Excellent Talents in Beijing (No. 2013D002020000001).
文摘Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most of the ROX is excreted into the manure, causing arsenic contamination in wastewater. The arsenic compounds are toxic to microorganisms, but the influence of continuous ROX loading on upflow anaerobic sludge blanket (UASB) reactor is still unknown. In this study, the impact of ROX and its degradation products on the performance of the UASB reactor and the degradation and speciation of ROX in the reactor were investigated. The UASB reactor (hydraulic retention time: 1.75 d) was operated using synthetic wastewater supplemented with ROX for a period of 260 days. With continuous ROX addition at 25.0 mg.L-1, severe inhibition to methanogenic activity occurred after 87 days operation accompanied with an accumulation of volatile fatty acids (VFAs) and a decline in pH. The decrease of added ROX concentration to 13.2 mg.L-1 did not mediate the inhibition. As(III), As (V), MMA(V), DMA(V), HAPA and an unknown arsenic compound were detected in the reactor, and a possible biotransformation pathway of ROX was proposed. Mass balance analysis of arsenic indicated that 60%-70% of the arsenic was discharged into the effluent, and 30%-40% was precipitated in the reactor. The results from this study suggest that we need to pay attention to the stability in the UASB reactors treating organoarsenic-contaminated manure and wastewater, and the effluent and sludge from the reactor tO avoid diffusion of arsenic contamination.